
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


b) Vì m,n nguyên dương. Mà vế phải là số dương.Nên m > n
Đặt \(m=n+k\left(k>0,k\inℤ\right)\)
Ta có: \(2^{n+k}-2^n=2^8\Leftrightarrow2^n\left(2^k-1\right)=2^8\)
\(\Rightarrow2^k-1\inƯ\left(2^8\right)\)
Do \(2^k-1\)lẻ.Mà ước của 28 chỉ có 1 là số lẻ.
Suy ra \(2^k-1=1\Leftrightarrow2^k=2\Leftrightarrow k=1\Leftrightarrow n=8\)
Suy ra \(m=k+n=1+8=9\)
Vậy n = 8 ; m = 9
a)2^m-2^m*2^n+2^n-1=-1
(2^m-1)(2^n-1)=1
do m,n là số tự nhiên nên
2^m-1 và 2^n-1 là ước dương của 1
hay đồng thời xảy ra 2^m-1=1 và 2^n-1=1 suy ra m=n=1

Câu trả lời hay nhất: Cách 1:
2^m + 2^n = 2^(m + n)
<=> 2^m = 2^(m + n) - 2^n
<=> 2^m = 2^n(2^m - 1)
<=> 2^(m - n) = 2^m - 1 (1)
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2).
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4).
(2) và (4) cho ta m = n và phương trình trở thành
2^(m + 1) = 2^(2m)
<=> m + 1 = 2m
<=> m = 1
Vậy phương trình có nghiệm m = n = 1.
Cách 2:
Trước hết, ta chứng minh rằng nếu a >= 2, b >= 2 thì a + b = ab khi và chỉ khi a = b = 2.
Thật vậy, không mất tính tổng quát, ta có thể giả sử a <= b.
Khi đó a + b <= 2b <= ab. Như vậy a + b = ab khi và chỉ khi a + b = 2b và 2b = ab, tức là a = b = 2.
Trở lại phương trình, đặt a = 2^m >= 2, b = 2^n >= 2, ta có a + b = ab nên a = b = 2, tức 2^m = 2^n = 2 hay m = n = 1.
:D

Ta có:
213 + 210 + 2x = y2
=> 8192 + 1024 + 2x = y2
=> 9216 + 2x = y2
=> 962 + 2x = y2
=> 2x = y2 - 962
=> 2x = (y - 96).(y + 96)
=> y - 96 và y + 96 đều là lũy thừa của 2
Do y + 96 > y - 96 nên ta giả sử y + 96 = 2m; y - 96 = 2n (m > n)
=> 2m - 2n = (y + 96) - (y - 96)
=> 2n.(2m-n - 1) = y + 96 - y + 96
=> 2n.(2m-n - 1) = 192
=> 192 chia hết cho 2m-n - 1
Mà 2m-n - 1 chia 2 dư 1
=> 2m-n - 1 = 1 hoặc 2m-n - 1 = 3
+ Với 2m-n - 1 = 1 thì 2n = 192, không tìm được giá trị thỏa mãn
+ Với 2m-n - 1 = 3 thì 2n = 64 = 26
=> 2m-n = 4 = 22; n = 6
=> m - n = 2; n = 6
=> m = 8; n = 6
=> y = 28 - 96 = 160; 2x = (160 - 96).(160 + 96) = 16384 = 214
=> x = 14
Vậy y = 160; x = 14
ms đầu nháp ra nhìn ngắn v mà lm ra coi bộ cx dài phết

2m+2n=2m+n.
<=> 2^m = 2^(m + n) - 2^n
<=> 2^m = 2^n(2^m - 1)
<=> 2^(m - n) = 2^m - 1 (1)
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2).
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4).
(2) và (4) cho ta m = n và phương trình trở thành
2^(m + 1) = 2^(2m)
<=> m + 1 = 2m
<=> m = 1
Vậy phương trình có nghiệm m = n = 1.
chúc bạn hok tốt

\(2^x+2^y=72\)
\(2^x+2^y=64+8\)
\(2^x+2^y=2^6+2^3\)
\(\Rightarrow x=6;y=3\)
Giả sử x>y, ta có:
2x + 2y = 72
=> 2y (1 + 2x-y) = 23. 32
Vì 1 + 2x-y là số lẻ nên 1 + 2x-y = 1;3;9
- Với 1 + 2x-y =1 thì 2y = 9 (loại)
- Với 1 + 2x-y = 3 thì 2y = 24 (loại)
- Với 1 + 2x-y = 9 thì 2y =1 => y = 0, 1 + 2x-y = 9 => 2x = 8 => x = 3
Vậy x = 3 và y = 0

a, Ta có: 3xy - 5 = x2 + 2y
=> 3xy - x2 - 2y = 5
=> y.( 3x - 2 ) = 5 + x.x
=> y = \(\frac{5+x^2}{3x-2}\)
=> \(x^2+5⋮3x-2\)( vì y là số nguyên )
=> \(3x^2+15⋮3x-2\)
\(\Rightarrow x\left(3x-2\right)+15+2x⋮3x-2\)
\(\Rightarrow2x+15⋮3x+2\)
\(\Rightarrow6x+45⋮3x+2\)
\(\Rightarrow2.\left(3x+2\right)+41⋮3x+2\)
\(\Rightarrow41⋮3x+2\)
\(\Rightarrow3x+2\in\left\{-41;-1;1;41\right\}\)
\(\Rightarrow3x\in\left\{-43;-3;-1;39\right\}\)
VÌ 3x chia hết cho 3
\(\Rightarrow3x\in\left\{-3;39\right\}\)
\(\Rightarrow x\in\left\{-1;13\right\}\)
+) với x = -1 => y = -6/5 ( loại )
+) với x = 13 => y = 174/37 ( loại )
Vậy không tìm được ( x ; y ) thỏa mãn bài
b,
Xét \(3^{n+2}-2^{n+2}+3^n-2^n=3^n.9-2^n.4+3^n-2^n=3^n.\left(9+1\right)-2^n.\left(4+1\right)=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Vậy: \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)


x,y ở đâu :))?
2m-2n=256
2m-2n=28
m-n=8