\(2^{x}+65\) là số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

\(x^4+2x^3+2x^2+x+3\)

\(\left(x^2+x+2\right)^2=x^4+5x^3+4x+4>x^4+2x^3+2x^2+x+3>x^4+2x^3+x^2\)

\(=\left(x^2+x\right)^2\)

\(\Rightarrow x^4+2x^3+2x^2+x+3=\left(x^2+x+1\right)^2\)

\(\Leftrightarrow x^4+2x^3+2x^2+x+3=x^4+2x^3+3x^2+2x+1\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy.......

4 tháng 6 2018

a/ ta có: 

\(x\sqrt{2y-1}+y\sqrt{2x-1}=\sqrt{x}.\sqrt{2xy-x}+\sqrt{y}.\sqrt{2xy-y}\)

\(\le\frac{x+2xy-x}{2}+\frac{y+2xy-y}{2}=2xy\)

Dấu = xảy ra khi ...

4 tháng 6 2018

Khi gì

b1,

\(n^4< n^4+n^3+n^2+n+1\le n^4+4n^3+6n^2+4n+1=\left(n+1\right)^4\)

=>n4+n3+n2+n+1=(n+1)4<=>n=0

nhầm sai rồi nếu n^4+n^3+n^2+n+1 là scp thì mới chặn đc nhưng ở đây lại ko phải

2 tháng 10 2019

Đặt\(x^4+x^2+1=a^2\) với \(a\in Z\)

Ta có:\(x^4+x^2+1=a^2\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)-x^2=a^2\)

\(\Leftrightarrow\left(x^2+1\right)^2-x^2=a^2\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x+1\right)=a^2\)

Để \(x^4+x^2+1\) là số chính phương thì:

\(x^2-x+1=x^2+x+1\Rightarrow-x=x\Rightarrow x=0\)

Vậy với  \(x=0\) thì \(x^4+x^2+1\) là số chính phương.

11 tháng 2 2020

Giả sử \(2^x+21=a^2\left(a\ge5\right)\)

Nếu \(a⋮3\Rightarrow2^x⋮3\)(Vô lí)

Nếu \(a\equiv1\left(mod3\right)\)\(\Rightarrow2^x\equiv1\left(mod3\right)\)

\(\Rightarrow\)x chẵn.

Đặt x = 2k(k thuộc N)

\(\Rightarrow21=\left(a-2^k\right)\left(a+2^k\right)\)

Xét tích là ra nha bn

12 tháng 2 2020

3 dấu gạch ngang và mở ngoặc mod 3 có nghỉa là gì vậy bạn ?