K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2015

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{x\left(x+1\right)}=\frac{99}{100}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{99}{100}\)

\(1-\frac{1}{x+1}=\frac{99}{100}\)

=> \(\frac{1}{x+1}=1-\frac{99}{100}=\frac{1}{100}\)

=> x+1 = 100

=> x = 100 - 1 

=> x = 99

25 tháng 7 2015

mơ đi Nguyễn Đình Dũng

avt255773_60by60.jpg

7 tháng 4 2022

1/1.2 +1/2.3 +1/3.4 +....+1/99.100

=1-1/2+1/2-1/3+1/3-14+.....+1/99-1/100

=1-1/100

=99/100

7 tháng 4 2022

e ko cop đâu nhé e lớp 6 câu nay e làm đc ạ !

2 tháng 7 2016

làm ơn hãy giúp mình

31 tháng 7 2020

1.

c. \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

2. 

a. \(45-5\left(y+1\right)=10\)

\(\Rightarrow5\left(y+1\right)=35\)

\(\Rightarrow y+1=7\)

\(\Rightarrow y=6\)

b. \(y:2+y:2=15\)

\(\Rightarrow\frac{1}{2}y+\frac{1}{2}y=15\)

\(\Rightarrow y=15\)

31 tháng 7 2020

Bài 1 :

\(a,12,5\times32\times8\)

\(=\left(12,5\times8\right)\times32\)

\(=100\times32\)

\(=3200\)

\(b,20,9+20,9\times99\)

\(=20,9\times\left(1+99\right)\)

\(=20,9\times100\)

\(=2090\)

\(c,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{50}{50}-\frac{1}{50}\)

\(=\frac{49}{50}\)

Bài 2 :

\(a,45-5\times\left(y+1\right)=10\)

\(5\times\left(y+1\right)=45-10\)

\(5\times\left(y+1\right)=35\)

\(y+1=35\div5\)

\(y+1=7\)

\(y=7-1\)

\(y=6\)

\(b,y\div2+y\div2=15\)

\(y\times\frac{1}{2}+y\times\frac{1}{2}=15\)

\(2\times\left(y\times\frac{1}{2}\right)=15\)

\(y=15\)

Học tốt

23 tháng 8 2020

Bài làm:

Ta có: \(\frac{x}{1.2}+\frac{x}{2.3}+\frac{x}{3.4}+...+\frac{x}{2017.2018}=-1\)

\(\Leftrightarrow x\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\right)=-1\)

\(\Leftrightarrow x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\right)=-1\)

\(\Leftrightarrow x\left(1-\frac{1}{2018}\right)=-1\)

\(\Leftrightarrow x.\frac{2017}{2018}=-1\)

\(\Rightarrow x=-\frac{2018}{2017}\)

\(A=3\cdot\frac{1}{1\cdot2}-5\cdot\frac{1}{2\cdot3}+7\cdot\frac{1}{3\cdot4}-\cdots+15\cdot\frac{1}{7\cdot8}-17\cdot\frac{1}{8\cdot9}\)

\(=\frac{3}{1\cdot2}-\frac{5}{2\cdot3}+\frac{7}{3\cdot4}-\cdots+\frac{15}{7\cdot8}-\frac{17}{8\cdot9}\)

\(=1+\frac12-\frac12-\frac13+\frac13+\frac14-\cdots+\frac17+\frac18-\frac18-\frac19\)

\(=1-\frac19=\frac89\)

17 tháng 9

\(\) Ta có:

\(A=\frac{3\cdot1}{1\cdot2}-\frac{5\cdot1}{2\cdot3}+\frac{7\cdot1}{3\cdot4}-\cdots+\frac{15\cdot1}{7\cdot8}-\frac{17\cdot1}{8\cdot9}\)

\(A=\frac{3}{1\cdot2}-\frac{5}{2\cdot3}+\frac{7}{3\cdot4}-\cdots+\frac{15}{7\cdot8}-\frac{17}{8\cdot9}\)

\(A=\frac{1+2}{1\cdot2}-\frac{2+3}{2\cdot3}+\frac{3+4}{3\cdot4}-\cdots+\frac{7+8}{7\cdot8}-\frac{8+9}{8\cdot9}\)

\(A=\left(\frac11+\frac12\right)-\left(\frac12+\frac13\right)+\left(\frac13+\frac14\right)-\cdots+\left(\frac17+\frac18\right)-\left(\frac18+\frac19\right)\)

\(A=\frac11+\frac12-\frac12-\frac13+\frac13+\frac14-\cdots+\frac17+\frac18-\frac18-\frac19\)

\(A=1-\frac19\)

\(A=\frac89\)

Vậy \(A=\frac89\)

17 tháng 8 2017

A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

A x 3 = 99x100x101

A = 99x100x101 : 3

A = 333300 

17 tháng 8 2017

Ta có:

\(A=1.2+2.3+3.4+...+99.100\)

\(\Rightarrow3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(\Leftrightarrow3A=99.100.101\Leftrightarrow A=\frac{99.100.101}{3}=333300\)

\(B=1.2.3+2.3.4+4.5.6+...+98.99.100\)

\(\Rightarrow4B=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+4.5.6.\left(7-3\right)+...+98.99.100.\left(101-97\right)\)

\(\Rightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100\)

\(\Leftrightarrow4B=98.99.100.101\Leftrightarrow B=\frac{98.99.100.101}{4}=24497550\)

\(A=3\cdot\frac{1}{1\cdot2}-5\cdot\frac{1}{2\cdot3}+7\cdot\frac{1}{3\cdot4}-\cdots+15\cdot\frac{1}{7\cdot8}-17\cdot\frac{1}{8\cdot9}\)

\(=\frac{3}{1\cdot2}-\frac{5}{2\cdot3}+\frac{7}{3\cdot4}-\cdots+\frac{15}{7\cdot8}-\frac{17}{8\cdot9}\)

\(=1+\frac12-\frac12-\frac13+\frac13+\frac14-\cdots+\frac17+\frac18-\frac18-\frac19\)

\(=1-\frac19=\frac89\)

áp dụng công thức này là làm được bạn ạ:

\(\frac{a}{b.c}\) =\(\frac{a}{b}-\frac{a}{c}\)

25 tháng 10 2021

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2009}-\dfrac{1}{2010}\\ =1-\dfrac{1}{2010}=\dfrac{2009}{2010}\)