Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình sẽ làm chi tiết như sau nếu bạn ko hiểu thì tùy
\(C=\frac{6n-1}{3n+2}=\frac{\left(6n+4\right)-5}{3n+2}\)
Để C là số nguyên thì \(3n+2\inƯ\left(-5\right)\)
\(\Rightarrow3n+2=-5;3n+2=5;3n+2=1;3n+2=-1\)
Giải từng trường hợp ra thì sẽ có n thôi nhé

https://olm.vn/hoi-dap/question/925458.html
Giống câu hỏi này đó nha

Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}
:D

Do A có giá trị nguyên
\(\Rightarrow3n+2⋮n-1^{\left(1\right)}\)
Mà \(n-1⋮n-1\)
\(\Rightarrow3\left(n-1\right)⋮n-1^{\left(2\right)}\)
Từ (1) và (2)
\(\Rightarrow3n+2-3\left(n-1\right)⋮n-1\)
\(\Rightarrow3n+2-3n+3⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-1;-5;5;1\right\}\)
Xét \(n-1=-1\Rightarrow n=-4\)
\(n-1=-5\Rightarrow n=0\)
\(n-1=5\Rightarrow n=6\)
\(n-1=1\Rightarrow n=2\)
Vậy ...
A = \(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)
Để A có giá trị nguyên <=> n - 1 \(\in\)Ư(5) = {1;-1;5;-5}
Ta có: n - 1 = 1 => n = 2
n - 1 = -1 => n = 0
n - 1 = 5 => n = 6
n - 1 = -5 => n = -4
Vậy n = {2;0;6;-4}

=> 3n + 2 là bội của n - 1 hay 3n + 2 phải chia hết cho n - 1
=> 3 là bội của n - 1 hay 3 phải chia hết cho n - 1
\(\RightarrowƯ_3=\left\{+-1;+-3\right\}\)
=> n - 1 = 1 => n = 1 + 1 = 2
n - 1 = -1 => n = -1 + 1 = 0
n - 1 = 3 => n = 3 + 1 = 4
n - 1 = -3 => n = -3 + 1 = -2
=> \(n\in\left\{-2;0;2;4\right\}\)

để A là giá trị nguyên thì 3 chia hét n-1
=> n-1 thuộc Ư(3)
n-1=1
n=1+1
n=2
tự tính tiếp nha
A =\(\frac{3}{n-1}\)
Suy ra n -1 thuộc Ư(3) và n - 1 thuộc Z
Ta có Ư(3) = ( -1;-3;1;3 )
Do đó
n - 1 = -1
n = -1 + 1
n = 0
n - 1 = -3
n = -3 + 1
n = -2
n - 1 =1
n = 1 + 1
n = 2
n - 1 = 3
n = 3 + 1
n = 4
Vậy n =0;-2;2;4

Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
- Nếu n-1=-5 => n=-4
- Nếu n-1=-1 => n=0
- Nếu n-1=1 => n=2
- Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
- Nếu n-1=-5 => n=-4
- Nếu n-1=-1 => n=0
- Nếu n-1=1 => n=2
- Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}

Để \(\frac{3n+2}{n-1}\)là số nguyên thì 3n + 2 phải chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
=> 3(n - 1) + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1 (Vì 3(n - 1) chia hết cho n - 1)
=> n - 1 thuộc {-1; 1; -5; 5}
=> n thuộc {0; 2; -4; 6}
Vậy...
\(A=\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
A E Z<=>5/n-1 E Z<=>5 chia hết chia hết cho n-1
=>n-1 E Ư(5)={-5;-1;1;5]
=>n E {-4;0;2;6}
vậy....
\(A=\dfrac{3n+1}{n-2}=\dfrac{3n-6+7}{n-2}=\dfrac{3\left(n-2\right)+7}{n-2}=3+\dfrac{7}{n-2}\)
A nguyên \(\Rightarrow\dfrac{7}{n-2}\) nguyên
\(\Rightarrow n-2=Ư\left(7\right)\)
\(\Rightarrow n-2=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow n=\left\{-5;1;3;9\right\}\)