K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: Tìm số nguyên tố P

a: TH1: P=2

\(2p^2+1=2\cdot2^2+1=2\cdot4+1=9\) là hợp số

=>Nhận

TH2: p=3

\(2p^2+1=2\cdot3^2+1=2\cdot9+1=19\) là số nguyên tố

=>Loại

TH3: p=3k+1

\(2p^2+1=2\cdot\left(3k+1\right)^2+1\)

\(=2\left(9k^2+6k+1\right)+1=18k^2+12k+2+1\)

\(=18k^2+12k+3=3\left(6k^2+4k+1\right)\) ⋮3

=>\(2p^2+1\) là hợp số

TH4: p=3k+2

\(2p^2+1=2\left(3k+2\right)^2+1\)

\(=2\left(9k^2+12k+4\right)+1=18k^2+24k+8+1\)

\(=18k^2+24k+9=3\left(3k^2+6k+3\right)\) ⋮3

=>\(2p^2+1\) là hợp số

Vậy: p=2 hoặc p là số nguyên tố lớn hơn 3

b: TH1: p=3

p+4=3+4=7; p+8=3+8=11

=>Nhận

TH2: p=3k+1

\(p+8=3k+1+8=3k+9=3\left(k+3\right)\) ⋮3

=>p+8 là hợp số

=>Loại

TH3: p=3k+2

\(p+4=3k+2+4=3k+6=3\left(k+2\right)\) ⋮3

=>p+4 là hợp số

=>Loại

Bài 1:

ƯCLN(a;b)=15

=>a⋮15; b⋮15

\(a\cdot b=ƯCLN\left(a;b\right)\cdot BCN\mathbb{N}\left(a;b\right)\)

=>\(a\cdot b=15\cdot3000=45000\)

mà a⋮15; b⋮15

nên (a;b)∈{(15;3000);(3000;15);(30;1500);(1500;30);(60;750);(750;60);(75;600);(600;75);(120;375);(375;120);(150;300);(300;150)}

mà ƯCLN(a;b)=15

nên (a;b)∈{(15;3000);(3000;15);(120;375);(375;120)}

Bài 2:

Sửa đề: Tìm số nguyên tố P

a: TH1: P=2

\(2p^2+1=2\cdot2^2+1=2\cdot4+1=9\) là hợp số

=>Nhận

TH2: p=3

\(2p^2+1=2\cdot3^2+1=2\cdot9+1=19\) là số nguyên tố

=>Loại

TH3: p=3k+1

\(2p^2+1=2\cdot\left(3k+1\right)^2+1\)

\(=2\left(9k^2+6k+1\right)+1=18k^2+12k+2+1\)

\(=18k^2+12k+3=3\left(6k^2+4k+1\right)\) ⋮3

=>\(2p^2+1\) là hợp số

TH4: p=3k+2

\(2p^2+1=2\left(3k+2\right)^2+1\)

\(=2\left(9k^2+12k+4\right)+1=18k^2+24k+8+1\)

\(=18k^2+24k+9=3\left(3k^2+6k+3\right)\) ⋮3

=>\(2p^2+1\) là hợp số

Vậy: p=2 hoặc p là số nguyên tố lớn hơn 3

b: TH1: p=3

p+4=3+4=7; p+8=3+8=11

=>Nhận

TH2: p=3k+1

\(p+8=3k+1+8=3k+9=3\left(k+3\right)\) ⋮3

=>p+8 là hợp số

=>Loại

TH3: p=3k+2

\(p+4=3k+2+4=3k+6=3\left(k+2\right)\) ⋮3

=>p+4 là hợp số

=>Loại

25 tháng 12 2023

Olm.vn sẽ hướng dẫn em giải bằng phương pháp đánh giá em nhé!

Nếu p = 2 \(\Rightarrow\) 2p2 + 1 = 2.22 + 1  = 9 (nhận)

Nếu p = 3 ⇒ 2p2 + 1 = 2.32 + 1 = 19 (loại)

Nếu p > 3 ⇒ p không chia hết cho 3 ⇒ p2 chia 3 dư 1

⇒ 2p2 : 3 dư 2 ⇒ 2p2 + 1 ⋮ 3 (nhận)

Từ những lập luận trên ta có 

        \(\forall\) p \(\ne\)  3; p \(\in\) P thì 2p2 + 1 là hợp số

b,  p + 4 và p + 8 đều là số nguyên tố.

      Nếu p = 2 thì p + 4 =  2 + 4 = 6 loại

     Nếu p  = 3 thì p + 4 = 3 + 4  = 7; p + 8 = 3 + 8  = 11 (nhận)

     Nếu p > 3 ta có: p  không chia hết cho 3 ⇒ p = 3k + 1

     hoặc p = 3k + 2

    th1 : p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 ⋮ 3 (loại)

   th2:  p = 3k + 2  thì p + 4 = 3k + 2 + 4 = 3k + 6 ⋮ 3 (loại)

Từ những lập luận trên ta có p = 3 là giá trị thỏa mãn đề bài

 

a: TH1: p=3

p+4=3+4=7; p+8=3+8=11

=>Nhận

TH2: p=3k+1

p+8=3k+1+8

=3k+9

=3(k+3)⋮3

=>Loại

TH3: p=3k+2

p+4=3k+2+4

=3k+6

=3(k+2)⋮3

=>Loại

Sửa đề: Tìm số nguyên tố P

a: TH1: P=2

\(2p^2+1=2\cdot2^2+1=2\cdot4+1=9\) là hợp số

=>Nhận

TH2: p=3

\(2p^2+1=2\cdot3^2+1=2\cdot9+1=19\) là số nguyên tố

=>Loại

TH3: p=3k+1

\(2p^2+1=2\cdot\left(3k+1\right)^2+1\)

\(=2\left(9k^2+6k+1\right)+1=18k^2+12k+2+1\)

\(=18k^2+12k+3=3\left(6k^2+4k+1\right)\) ⋮3

=>\(2p^2+1\) là hợp số

TH4: p=3k+2

\(2p^2+1=2\left(3k+2\right)^2+1\)

\(=2\left(9k^2+12k+4\right)+1=18k^2+24k+8+1\)

\(=18k^2+24k+9=3\left(3k^2+6k+3\right)\) ⋮3

=>\(2p^2+1\) là hợp số

Vậy: p=2 hoặc p là số nguyên tố lớn hơn 3

b: TH1: p=3

p+4=3+4=7; p+8=3+8=11

=>Nhận

TH2: p=3k+1

\(p+8=3k+1+8=3k+9=3\left(k+3\right)\) ⋮3

=>p+8 là hợp số

=>Loại

TH3: p=3k+2

\(p+4=3k+2+4=3k+6=3\left(k+2\right)\) ⋮3

=>p+4 là hợp số

=>Loại

Sửa đề: Tìm số nguyên tố P

a: TH1: P=2

\(2p^2+1=2\cdot2^2+1=2\cdot4+1=9\) là hợp số

=>Nhận

TH2: p=3

\(2p^2+1=2\cdot3^2+1=2\cdot9+1=19\) là số nguyên tố

=>Loại

TH3: p=3k+1

\(2p^2+1=2\cdot\left(3k+1\right)^2+1\)

\(=2\left(9k^2+6k+1\right)+1=18k^2+12k+2+1\)

\(=18k^2+12k+3=3\left(6k^2+4k+1\right)\) ⋮3

=>\(2p^2+1\) là hợp số

TH4: p=3k+2

\(2p^2+1=2\left(3k+2\right)^2+1\)

\(=2\left(9k^2+12k+4\right)+1=18k^2+24k+8+1\)

\(=18k^2+24k+9=3\left(3k^2+6k+3\right)\) ⋮3

=>\(2p^2+1\) là hợp số

Vậy: p=2 hoặc p là số nguyên tố lớn hơn 3

b: TH1: p=3

p+4=3+4=7; p+8=3+8=11

=>Nhận

TH2: p=3k+1

\(p+8=3k+1+8=3k+9=3\left(k+3\right)\) ⋮3

=>p+8 là hợp số

=>Loại

TH3: p=3k+2

\(p+4=3k+2+4=3k+6=3\left(k+2\right)\) ⋮3

=>p+4 là hợp số

=>Loại

26 tháng 2 2021

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

26 tháng 2 2021

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

18 tháng 7 2015

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

18 tháng 7 2015

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

22 tháng 10 2016

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,

22 tháng 10 2016

cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số  b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,