Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để phân số 5 / m-7 là số nguyên thì 5 phải chia hết cho m-7
Suy ra m - 7 là ước của 5
Mà các ước của 5 là -5;-1;1;5
Suy ra m -7 thuộc {-5;-1;1;5}
Suy ra m thuộc {2;6;8;12}
Để \(\frac{5}{m-7}\)là số nguyên
=> \(5⋮m-7\)
=> \(m-7\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau :
m-7 | 1 | -1 | 5 | -5 |
m | 8 | 6 | 12 | 2 |
m thuộc các giá trị trên thì \(\frac{5}{m-7}\)là số nguyên

Ta có:\(\frac{6b+34}{b+4}\)
Để phân số trên là số nguyên thì \(6b+34⋮b+4\)
Đoạn sau mik ko bt lm nữa
Gọi phân số \(\frac{6b+34}{b+4}\)là A
Để A là số nguyên thì \(6b+34⋮b+4\)
\(\Rightarrow6b+24+10⋮b+4\)
\(\Rightarrow10⋮b+4\)( vì \(6b+24⋮b+4\))
\(\Rightarrow b+4\inƯ\left(10\right)=\left\{\pm10;\pm5;\pm2;\pm1\right\}\)
\(\Rightarrow b\in\left\{-14;6;-9;1;-6;-2;-5;-3\right\}\)
Vậy \(b\in\left\{-14;6;-9;1;-6;-2;-5;-3\right\}\)thì A cũng là số nguyên

Sửa đề : Tìm n nguyên để \(\frac{7n+68}{n+8}\)là số nguyên
Để \(\frac{7n+68}{n+8}\) nguyên
=> 7n + 68 chia hết cho n + 8
=> 7n + 56 + 12 chia hết cho n + 8
=> 7(n + 8) + 12 chia hết cho n + 8
=> 12 chia hết cho n + 8
=> n + 8 thuộc Ư(12) = {1 ; -1 ; 2 ; -2 ; 3 ; -3; 4 ; -4 ; 6 ; -6; 12 ; -12}
Ta có bảng sau :
n + 8 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | -7 | -9 | -6 | -10 | -5 | -11 | -4 | -12 | -2 | -14 | 4 | -20 |
\(\frac{7N+68}{N+8}\) ( Nguyên )
=> 7n + 68 chia hết cho n + 8
=> 7n + 56 + 12 chia hết cho n + 8
=> 7(n + 8) + 12 chia hết cho n + 8
=> 12 chia hết cho n + 8
=> n + 8 thuộc Ư(12) = {1 ; -1 ; 2 ; -2 ; 3 ; -3; 4 ; -4 ; 6 ; -6; 12 ; -12}
Ta có bảng sau :
n + 8 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | -7 | -9 | -6 | -10 | -5 | -11 | -4 | -12 | -2 | -14 | 4 | -20 |

Giải: Để \(\frac{4a-5}{a+2}\)là số nguyên <=> 4a - 5 \(⋮\)a + 2
<=> 4(a + 2) - 13 \(⋮\)a + 2
<=> 13 \(⋮\)a + 2
<=> a + 2 \(\in\)Ư(13) = {1; -1; 13 ; -13}
Lập bảng :
a + 2 | 1 | -1 | 13 | -13 |
a | -1 | -3 | 11 | -15 |
Vậy ...
Để \(\frac{4a-5}{a+2}\) là số nguyên thì
\(4a-5⋮a+2\)
Mà \(a+2⋮a+2\)
\(\Rightarrow4\left(a+2\right)⋮a+2\)
\(\Rightarrow\left(4a-5\right)-\left(4a+8\right)⋮a+2\)
\(\Rightarrow4a-5-4a-8⋮a+2\)
\(\Rightarrow-13⋮a+2\)
\(\Rightarrow a+2\inƯ\left(13\right)\)
\(\Rightarrow a+2\in\left\{\pm1;\pm13\right\}\)
\(\Rightarrow a\in\left\{-3;-1;11;-15\right\}\)

Ta có \(\frac{8c+56}{c+6}=\frac{8\left(c+6\right)+8}{c+6}=8+\frac{8}{c+6}\)
Để\(\frac{8c+56}{c+6}\inℕ\)thì\(\frac{8}{c+6}\inℕ\)
\(\Rightarrow c+6\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow c\in\left\{-14;-10;-8;-7;-5;-4;-2;2\right\}\)


\(\frac{8a-55}{a-5}\)có phải là phân số này không?
\(\frac{8a-55}{a-5}\)là số nguyên \(\Leftrightarrow8a-55⋮a-5\)
\(\Rightarrow8a-40-15⋮a-5\)
\(\Rightarrow8\left(a-5\right)-15⋮a-5\)
\(\Rightarrow15⋮a-5\)
\(\Rightarrow a-5\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
\(\Rightarrow a\in\left\{4;6;2;8;0;10;-10;20\right\}\)

Đặt \(A=\frac{5b+18}{b+6}\) ( A thuộc Z )
Ta có : \(A=\frac{5b+18}{b+6}=\frac{5b+30-12}{b+6}=5-\frac{12}{b+6}\)
Vì A thuộc Z nên 12 / b + 6 thuộc Z
\(\Rightarrow b+6\in\left\{\pm12;\pm6;\pm4;\pm3;\pm2;\pm1\right\}\)
\(\Rightarrow b\in\left\{-18;-12;-10;-9;-8;-7;-5;-4;-3;-2;0;6\right\}\)
Để \(\frac{5m+29}{m+4}\)là số nguyên thì \(5m+29⋮m+4\)
\(\Rightarrow5m+20+9⋮m+4\)
\(\Rightarrow5\left(m+4\right)+9⋮m+4\)
Vì \(5\left(m+4\right)⋮m+4\)
\(\Rightarrow9⋮m+4\)
\(\Rightarrow m+4\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
... (tự làm)