
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Với n−18n−18 và n−41n−41 là số chính phương ta có
{n+18=a2n−41=b2→n+18−(n−41)=(a−b)(a+b)=59=1.59→{a−b=1a+b=59→{a=30b=29→n=882
Câu hỏi hayHỌC BÀIKIỂM TRALUYỆN TẬPChưa trả lờiHỌC BÀICâu hỏi tôi quan tâmCâu hỏi của bạn bèGửi câu hỏiTrang đầu



1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

a) ta có với n nguyên dương n2+n+1=n2+2n+1-n=(n+1)2-n
như vậy có n2<n2+n+1<n2+2n+1 hay n2<n2+n+1<(n+1)2
mà n2 và (n+1)2 là 2 số chính phương liên tiếp
=> n2+n+1 không là số chính phương với mọi n nguyên dương (đpcm)

Với \(n=1\) thì \(A=2\) không là SCP.
Với \(n=2\) thì \(B=32\) không là SCP.
Với \(n>2\) thì ta có \(A=n^2-n+2< n^2\) và \(A=n^2-n+2>n^2-2n+1=\left(n-1\right)^2\).
Do đó \(\left(n-1\right)^2< A< n^2\) nên A không thể là số chính phương.
Vậy, không tồn tại số nguyên dương \(n\) nào thỏa ycbt.