Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Vì m,n nguyên dương. Mà vế phải là số dương.Nên m > n
Đặt \(m=n+k\left(k>0,k\inℤ\right)\)
Ta có: \(2^{n+k}-2^n=2^8\Leftrightarrow2^n\left(2^k-1\right)=2^8\)
\(\Rightarrow2^k-1\inƯ\left(2^8\right)\)
Do \(2^k-1\)lẻ.Mà ước của 28 chỉ có 1 là số lẻ.
Suy ra \(2^k-1=1\Leftrightarrow2^k=2\Leftrightarrow k=1\Leftrightarrow n=8\)
Suy ra \(m=k+n=1+8=9\)
Vậy n = 8 ; m = 9
a)2^m-2^m*2^n+2^n-1=-1
(2^m-1)(2^n-1)=1
do m,n là số tự nhiên nên
2^m-1 và 2^n-1 là ước dương của 1
hay đồng thời xảy ra 2^m-1=1 và 2^n-1=1 suy ra m=n=1

2m + 2n = 2m+n
=> 2m = 2m+n - 2n = 2n.(2m - 1)
Dễ thấy m \(\ne0\Rightarrow2^m⋮2\)
Mà 2m - 1 chia 2 dư 1 nên \(\begin{cases}2^m=2^n\\2^m-1=1\end{cases}\)\(\Rightarrow\begin{cases}m=n\\2^m=2=2^1\end{cases}\)=> m = n = 1
Vậy m = n = 1
2m - 2n = 256
=> 2n.(2m-n - 1) = 28
Dễ thấy: \(2^{m-n}-1\ne0\Rightarrow2^{m-n}\ne1\) => m - n \(\ne0\)
\(\Rightarrow2^{m-n}⋮2\)
=> 2m-n - 1 chia 2 dư 1
=> \(\begin{cases}2^n=2^8\\2^{m-n}-1=1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\2^{m-n}=2=2^1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\m-n=1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\m=9\end{cases}\)
Vậy n = 8; m = 9

Câu trả lời hay nhất: Cách 1:
2^m + 2^n = 2^(m + n)
<=> 2^m = 2^(m + n) - 2^n
<=> 2^m = 2^n(2^m - 1)
<=> 2^(m - n) = 2^m - 1 (1)
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2).
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4).
(2) và (4) cho ta m = n và phương trình trở thành
2^(m + 1) = 2^(2m)
<=> m + 1 = 2m
<=> m = 1
Vậy phương trình có nghiệm m = n = 1.
Cách 2:
Trước hết, ta chứng minh rằng nếu a >= 2, b >= 2 thì a + b = ab khi và chỉ khi a = b = 2.
Thật vậy, không mất tính tổng quát, ta có thể giả sử a <= b.
Khi đó a + b <= 2b <= ab. Như vậy a + b = ab khi và chỉ khi a + b = 2b và 2b = ab, tức là a = b = 2.
Trở lại phương trình, đặt a = 2^m >= 2, b = 2^n >= 2, ta có a + b = ab nên a = b = 2, tức 2^m = 2^n = 2 hay m = n = 1.
:D

Có 2m -2n=256=28
=> 2n (2m-n-1)=28.
=>2m-n-1=28-n
=>2m-n = 28-n +1
TH1: 8-n = 0 => n = 8 => 2m-n=2 => m-n =1 => m =9
TH2: 8-n <0 => vô lý do 28-n +1 sẽ là phân số trong khi 2m-n không là phân số
TH3: 8-n>0 => 28-n +1 lẻ trong khi 2m-n chẵn => vô lý
=> m =9, n=8 => m+n=17

2m+2n=2m+n.
<=> 2^m = 2^(m + n) - 2^n
<=> 2^m = 2^n(2^m - 1)
<=> 2^(m - n) = 2^m - 1 (1)
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2).
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4).
(2) và (4) cho ta m = n và phương trình trở thành
2^(m + 1) = 2^(2m)
<=> m + 1 = 2m
<=> m = 1
Vậy phương trình có nghiệm m = n = 1.
chúc bạn hok tốt

Ta có 2m - 2n > 0 => 2m > 2n => m > n
Nên (1) ( 2n(2m-n – 1) = 28
Vì m-n > 0 => 2m-n– 1 lẽ => 2m-n-1 =1 => 2m-n= 21
=> m - n =1 => m = n +1 => n = 8, m = 9
2m-2n > 0 => 2m>2n => m>n
2m-2n=256
2n(2m-n-1) = 28
* Nếu m-n =1 thì
2n(2m-n-1)=28
2n(2-1) =28
2n = 28
=> n=8
m-n = 1
m-8 = 1
m = 8+1
m=9
* Nếu m-n lớn hơn hoặc bằng 2 thì :
2m-n-1 là số lẻ lớn hơn 1 nên vế trái là thừa số nguyên tố lẻ mà vế phải (28) là thừa số nguyên tố lẻ nên mâu thuẫn
Vậy m=9 ; n=8
a) m = n = 2
b) m = 9; n = 8
a) 2m + 2n = 2m . 2n
=> m=n=1
b) 2m - 2n = 2.256 - 256
=> m = 9 ; n = 8