Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đa thức x2 - 3x + 2 có nghiệm \(\Leftrightarrow\)x2 - 3x + 2 = 0
\(\Leftrightarrow x^2-2x-x+2=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
1 và 2 là hai nghiệm của đa thức x2 - 3x + 2
Để f(x) = x4 + ax3 + bx - 1 chia hết cho x2 - 3x + 2 thì 1 và 2 cũng là hai nghiệm của đa thức f(x) = x4 + ax3 + bx - 1
Nếu x = 1 thì \(1+a+b-1=0\Leftrightarrow a+b=0\)(1
Nếu x = 2 thì \(16+8a+2b-1=0\Leftrightarrow4a+b=\frac{-15}{2}\)(2)
Lấy (2) - (1), ta được: \(3a=\frac{-15}{2}\Leftrightarrow a=\frac{-5}{2}\)
\(\Rightarrow b=0+\frac{5}{2}=\frac{5}{2}\)
Vậy \(a=\frac{-5}{2};b=\frac{5}{2}\)

Ta có x^4-3x^3+3x^2+ax+b= (x2 -3x + 4)( x2 - 1) + (ax - 3x) + (b - 4)
Để đây là phép chia hết thì (ax - 3x) = 0 và (b - 4) = 0
Hay a=3 và b =4

p(x)=\(x^3+ã^2+bx+c\)
với x=1 thì p(1)=0 hay
\(1+a+b+c=0\)
p(x) \(chia\)p(x-2) dư 6
với x=2 =>\(4a+2b+c+8=6< =>4a+2b+c=-2\)
tương tự với cái còn lại
xong bạn giải hệ phương trình bậc nhất ba ẩn là xong

\(\frac{F\left(x\right)}{G\left(x\right)}=\frac{ax^3+bx^2+10x-4}{x^2+x-2}\)
\(=\frac{a\cdot x^3+a\cdot x^2-2a\cdot x+\left(b-a\right)\cdot x^2+\left(b-a\right)\cdot x-2\left(b-a\right)+\left(10-b+3a\right)x+2\left(b-a\right)-4}{x^2+x-2}\)
\(=a\cdot x+\left(b-a\right)+\frac{\left(3a-b+10\right)x+2\left(b-a\right)-4}{x^2+x-2}\)
Để f(x) chia hết cho g(x) thì \(\begin{cases}3a-b+10=0\\ 2\left(b-a\right)-4=0\end{cases}\Rightarrow\begin{cases}3a-b=-10\\ b-a=2\end{cases}\Rightarrow\begin{cases}3a-b=-10\\ a-b=-2\end{cases}\)
=>\(\begin{cases}3a-b-a+b=-10+2\\ a-b=-2\end{cases}\Rightarrow\begin{cases}2a=-8\\ b=a-\left(-2\right)=a+2\end{cases}\Rightarrow\begin{cases}a=-4\\ b=a+2=-4+2=-2\end{cases}\)