
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Có link câu này bạn tham khảo xem có được không nhé
https://h.vn/hoi-dap/question/535151.html
Học tốt nhé!

a) Ta có A = x2 - 2x - 1 = (x2 - 2x + 1) - 2 = (x - 1)2 - 2 \(\ge\) -2
Dấu "=" xảy ra <=> x - 1 = 0 => x = 1
Vậy Min A = -2 <=> x = 1
b) Ta có B = 4x2 + 4x + 8 = (4x2 + 4x + 1) + 7 = (2x + 1)2 + 7 \(\ge\)7
Dấu |"=" xảy ra <=> 2x + 1 = 0 => x = -1/2
Vậy Min B = 7 <=> x = -1/2
c) Ta có C = 3x - x2 + 2
= -(x2 - 3x - 2)
= -(x2 - 3x + 9/4 - 9/4 - 2)
= -[(x - 3/2)2 - 17/4)
= -(x - 3/2)2 + 17/4 \(\le\frac{17}{4}\)
Dấu "=" xảy ra <=> x - 3/2 = 0 => x = 3/2
Vậy Max C = 17/4 <=> x = 3/2
d) Ta có D = -x2 - 5x = -(x2 + 5x) = -(x2 + 5x + 25/4 - 25/4) = -(x + 5/2)2 + 25/4 \(\ge\frac{25}{4}\)
Dấu "=" xảy ra <=> x + 5/2 = 0 => x = -5/2
Vậy Max D = 25/4 <=> x = -5/2
e) Ta có E = x2 - 4xy + 5y2 + 10x - 22y + 28
= (x2 - 4xy + 4y2) + 10x - 20y + y2 - 2y + 28
= (x - 2y)2 + 10(x - 2y) + 25 + (y2 - 2y + 1) + 2
= (x - 2y + 5) + (y - 1)2 + 2 \(\ge\)2
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy Min E = 2 <=> x = -3 ; y = 1

\(A=x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\ge-2\)
Dấu \(=\)xảy ra khi \(x=1\). Vậy GTNN của \(A\)là \(-2\).
\(B=4x^2+4x+8=4x^2+4x+1+7=\left(2x+1\right)^2+7\ge7\)
Dấu \(=\)xảy ra khi \(x=\frac{-1}{2}\). Vậy GTNN của \(B\)là \(7\).
\(C=-x^2+3x+2=-x^2+2.\frac{3}{2}x-\left(\frac{3}{2}\right)^2+\frac{17}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\le\frac{17}{4}\)
Dấu \(=\) xảy ra khi \(x=\frac{3}{2}\). Vậy GTLN của \(C\)là \(\frac{17}{4}\).
\(D=-x^2-5x=-x^2-2.\frac{5}{2}x-\left(\frac{5}{2}\right)^2+\frac{25}{4}=-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Dấu \(=\)xảy ra khi \(x=\frac{-5}{2}\). Vậy GTLN của \(D\) là \(\frac{25}{4}\).
\(E=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2+4y^2+25-4xy+10x-20y+y^2-2y+1+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\). Vậy GTNN của \(E\) là \(2\).


Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
\(x^2+4xy+5y^2=\text{[}x^2+4xy+\left(2y\right)^2\text{]}+y^2\)
\(=\left(x+2y\right)^2+y^2\)
Ta có: \(\left(x+2y\right)^2\ge\forall x;y\)
\(y^2\ge0\forall y\)
\(\Rightarrow\left(x+2y\right)^2+y^2\ge0\forall x;y\)
\(\Rightarrow x^2+4xy+5y^2\) không có giá trị lớn nhất
\(x^2+4xy+5y^2=0\Leftrightarrow\orbr{\begin{cases}\left(x+2y\right)^2=0\\y^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+2y=0\\y=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\y=0\end{cases}}}\)
KL:.........................................
Không có giá trị nhỏ nhất vì:
- Không có số x ; y nhỏ nhất
Không có giá trị lớn nhất vì:
- Không có số x ; y lớn nhất
( Đây là phép cộng )