
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Mình tách thành hai phần nhìn cho dễ hiểu nhé !
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
+) \(\frac{x-3\sqrt{x}}{x-9}-1=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}-1=\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{\sqrt{x}+3}{\sqrt{x}+3}=\frac{-3}{\sqrt{x}+3}\)
+) \(\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\)
\(=\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{9-x+x-9-x+4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{4-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
=> \(\frac{-3}{\sqrt{x}+3}\div\frac{4-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{-3}{\sqrt{x}+3}\times\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{4-x}\)
\(=\frac{3\left(\sqrt{x}-2\right)}{x-4}=\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3}{\sqrt{x}+2}\)

Giúp tôi giải toán và làm văn
Tất cảToánVăn - Tiếng ViệtTiếng Anh

26 tháng 7 2016 lúc 15:48
I don't need nghĩa là gì , đoán đúng cho 10 nghìn ,cấm tra google dịch
Được cập nhật Vài giây trước


Thống kê hỏi đáp
Báo cáo sai phạm
i don't need la tao ko can

Thống kê hỏi đáp
Báo cáo sai phạm
Ôi trời câu hỏi của bạn trờ thành câu trả lời luôn hả ?

Thống kê hỏi đáp
Báo cáo sai phạm
ngu đâu mà trả lời .
hứ

10 tháng 3 lúc 14:50
Choa≥0,b≥0 Chứng minh bất đẳng thức Cauchy : a+b2 ≥√ab
Được cập nhật 2 phút trước


Thống kê hỏi đáp
Báo cáo sai phạm
BĐT tương đương :
a+b≥2√ab
⇔(a+b)2≥4ab
⇔(a−b)2≥0 ( luôn đúng )
Vậy ta có đpcm
Dấu "=" xảy ra ⇔a=b


Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích

a/ Căn xác định với \(2\le x< 3\) ta có \(\frac{\left(x-2\right)^2}{3-x}+\frac{x^2+1}{x-3}=0\)
<=> \(\frac{\left(x-2\right)^2}{3-x}-\frac{x^2+1}{3-x}=0\)<=> \(^{x^2-4x+4-x^2-1=0}\)<=> x = 3/4 ( Không TM ) Vậy PTVN
Bài 2:
*)GTNN: Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:
\(A=\sqrt{x+3}+\sqrt{5-x}\)
\(\ge\sqrt{x+3+5-x}=\sqrt{8}\)
Đẳng thức xảy ra khi \(-3\le x\le5\)
*)GTLN:Áp dụng BĐT Cauchy-Schwarz ta có:
\(A^2=\left(\sqrt{x+3}+\sqrt{5-x}\right)^2\)
\(\le\left(1+1\right)\left(x+3+5-x\right)\)
\(=2\cdot8=16\)
\(\Rightarrow A^2\le16\Rightarrow A\le4\)
Đẳng thức xảy ra khi \(x=1\)

1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)
Đạt được khi x = 9
2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)
\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)
\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)
Không có GTLN nhé