Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3

Lời giải:
Do $(2023-x)^2\geq 0$ với mọi $x$ nên:
$3(y-3)^2=16-(2023-x)^2\leq 16<18$
$\Rightarrow (y-3)^2< 6$
Mà $(y-3)^2\geq 0$ và $(y-3)^2$ là số chính phương với mọi $y$ nguyên.
$\Rightarrow (y-3)^2=0$ hoặc $(y-3)^2=4$
Nếu $(y-3)^2=0$ thì $y=3$.
Khi đó: $(2023-x)^2=16-3.0^2=16$
$\Rightarrow 2023-x=4$ hoặc $2023-x=-4$
$\Rightarrow x=2019$ hoặc $x=2027$
Nếu $(y-3)^2=4\Rightarrow y-3=2$ hoặc $y-3=-2$
$\Rightarrow y=5$ hoặc $y=1$
Khi đó:
$(2023-x)^2=16-3.4=4=2^2=(-2)^2$
$\Rightarrow 2023-x=2$ hoặc $2023-x=-2$
$\Rightarrow x=2021$ hoặc $x=2025$

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
Do đó \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
Thay vào biểu thức \(P=\left(x-y\right)^{2022}+\left(y-z\right)^{2023}+\left(x-z-1\right)^{202}\),ta có:
\(P=0^{2022}+0^{2023}+\left(-1\right)^{202}\)
\(=0+0+1\)
\(=1\)

Sửa đề: \(\frac{6}{\left(x-2\right)^2+2}=\left|y-2022\right|+\left|y-2025\right|\)
Ta có: \(\left(x-2\right)^2+2\ge2\forall x\)
=>\(\frac{6}{\left(x-2\right)^2+2}\le\frac62=3\forall x\)
\(\left|y-2022\right|+\left|y-2025\right|=\left|y-2022\right|+\left|2025-y\right|\ge\left|y-2022+2025-y\right|=3\forall y\)
mà \(\frac{6}{\left(x-2\right)_{}^2+2}=\left|y-2022\right|+\left|y-2025\right|\)
nên \(\frac{6}{\left(x-2\right)^2+2}=\left|y-2022\right|+\left|y-2025\right|=3\)
=>\(\begin{cases}\left(x-2\right)^2+2=\frac63=2\\ \left(y-2022\right)\left(y-2025\right)\le0\end{cases}\Rightarrow\begin{cases}x-2=0\\ 2022\le y\le2025\end{cases}\)
=>\(\begin{cases}x=2\\ y\in\left\lbrace2022;2023;2024;2025\right\rbrace\end{cases}\)

Do (2023−x)2≥0(2023−�)2≥0 với mọi x� nên:
3(y−3)2=16−(2023−x)2≤16<183(�−3)2=16−(2023−�)2≤16<18
⇒(y−3)2<6⇒(�−3)2<6
Mà (y−3)2≥0(�−3)2≥0 và (y−3)2(�−3)2 là số chính phương với mọi y� nguyên.
⇒(y−3)2=0⇒(�−3)2=0 hoặc (y−3)2=4(�−3)2=4
Nếu (y−3)2=0(�−3)2=0 thì

olm sẽ hướng dẫn em làm bài này như sau:
Bước 1: em giải phương trình tìm; \(x\); y
Bước 2: thay\(x;y\) vào P
(\(x-1\))2022 + |y + 1| = 0
Vì (\(x-1\))2022 ≥ 0 ∀ \(x\); |y + 1| ≥ 0 ∀ y
⇒ (\(x\) - 1)2022 + |y + 1| = 0
⇔ \(\left\{{}\begin{matrix}\left(x-1\right)^{2022}=0\\y+1=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) (1)
Thay (1) vào P ta có:
12023.(-1)2022 : )(2.1- 1)2022 + 2023
= 1 + 2023
= 2024

WTF!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
.................................................................................................... điền số 0