K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

=>x=2k; y=3k; z=5k

Ta có: \(x^2+y^2-z^2=-48\)

=>\(\left(2k\right)^2+\left(3k\right)^2-\left(5k\right)^2=-48\)

=>\(4k^2+9k^2-25k^2=-48\)

=>\(-12k^2=-48\)

=>\(k^2=4\)

=>\(\left[\begin{array}{l}k=2\\ k=-2\end{array}\right.\)

TH1: k=2

=>\(\begin{cases}x=2\cdot2=4\\ y=3\cdot2=6\\ z=5\cdot2=10\end{cases}\)

TH2: k=-2

=>\(\begin{cases}x=2\cdot\left(-2\right)=-4\\ y=3\cdot\left(-2\right)=-6\\ z=5\cdot\left(-2\right)=-10\end{cases}\)

20 tháng 9

x/2=y/3=z/5

Suy ra 2x/4=y/3=3z/15

Suy ra 2x/4=y/3=3z/15=2x+y-3z/4+3-15=-8/-8=1 ( tính chất dãy tỉ số bằng nhau)

Suy ra +)2x/4=1 suy ra x=2

+) y/3=1 suy ra y=3

+)3z/15=1 suy ra z=5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{2x+y-3z}{2\cdot2+3-3\cdot5}=\frac{-8}{-8}=1\)

=>\(\begin{cases}x=2\cdot1=2\\ y=3\cdot1=3\\ z=5\cdot1=5\end{cases}\)

20 tháng 9

your gay

26 tháng 12 2017

đáp án https://goo.gl/BjYiDy

TH1:x+y+z=0 \(\Rightarrow x=y=z=0\)

TH2:x+y+z\(\ne0\)

Áp dụng t/c .............

Được x+y+z=1/2

Biến đổi ta được \(x=\frac{1}{2};y=\frac{1}{2};z=-\frac{1}{2}\)

NM
8 tháng 8 2021

ta có :

\(\frac{2}{y-2}=\frac{3}{z+2}\Leftrightarrow\frac{2}{y}=\frac{3}{z+5}\Leftrightarrow\frac{4}{y^2}=\frac{9}{\left(z+5\right)^2}\) hay ta có :\(\left(z+5\right)^2=\frac{9}{4}y^2\Rightarrow2y^2-\frac{9}{4}y^2=-25\Leftrightarrow y^2=100\)

TH1.\(y=10\Rightarrow\frac{4}{x+1}=\frac{2}{10-2}=\frac{3}{z+2}\Leftrightarrow\hept{\begin{cases}x=15\\z=10\end{cases}}\)

TH2.\(y=-10\Rightarrow\frac{4}{x+1}=\frac{2}{-10-2}=\frac{3}{z+2}\Leftrightarrow\hept{\begin{cases}x=-25\\z=-20\end{cases}}\)

26 tháng 3 2019

Từ đề <=>\(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+zy}\Leftrightarrow xz=xy=zy\)

Có : \(zx=xy\Rightarrow y=z\left(\text{Vì }x\ne0\right),xy=zy\Rightarrow x=z\)

=> x=y=z 

tự tính M :]]

27 tháng 3 2019

bạn nào t-i-k sai cho tớ làm lại hộ ạ :)

12 tháng 5 2019

Vì \(\hept{\begin{cases}\sqrt{\left(x-\sqrt{2}\right)^2}\ge0\forall x\\\sqrt{\left(y+\sqrt{2}\right)^2}\ge0\forall y\\\left|x+y+z\right|\ge0\forall x;y;z\end{cases}}\)

Do đó : \(\hept{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{cases}}\)