Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a cần tìm các số nguyên dương \(m\) và \(n\) sao cho:
\(A = \frac{3 m - 1}{2 n} \text{v} \overset{ˋ}{\text{a}} B = \frac{3 n - 1}{2 m}\)
đều là các số nguyên dương.
Bước 1: Phân tích điều kiện
Ta có:
- \(A = \frac{3 m - 1}{2 n} \in \mathbb{Z}^{+}\)
- \(B = \frac{3 n - 1}{2 m} \in \mathbb{Z}^{+}\)
Suy ra:
- \(2 n \mid \left(\right. 3 m - 1 \left.\right)\) hay \(3 m - 1 \equiv 0 \left(\right. m o d 2 n \left.\right)\)
- \(2 m \mid \left(\right. 3 n - 1 \left.\right)\) hay \(3 n - 1 \equiv 0 \left(\right. m o d 2 m \left.\right)\)
Bước 2: Dùng thử vài giá trị nhỏ
Thử với \(m = 1\):
- \(A = \frac{3 \left(\right. 1 \left.\right) - 1}{2 n} = \frac{2}{2 n} = \frac{1}{n}\) → không nguyên trừ khi \(n = 1\)
- Nếu \(m = 1 , n = 1\) ⇒ \(A = \frac{2}{2} = 1\), \(B = \frac{2}{2} = 1\) ✅
Thử \(m = 2\):
- \(A = \frac{6 - 1}{2 n} = \frac{5}{2 n}\)
- Không nguyên trừ khi \(2 n = 1\) hoặc 5 ⇒ không có \(n \in \mathbb{Z}^{+}\) phù hợp
Thử \(m = 3\):
- \(A = \frac{9 - 1}{2 n} = \frac{8}{2 n} = \frac{4}{n}\)
- Để nguyên ⇒ \(n \in \left{\right. 1 , 2 , 4 \left.\right}\)
Thử với các giá trị \(n\) trên:
- \(n = 1\): \(B = \frac{3 \left(\right. 1 \left.\right) - 1}{2 \cdot 3} = \frac{2}{6} = \frac{1}{3}\) ❌
- \(n = 2\): \(B = \frac{6 - 1}{6} = \frac{5}{6}\) ❌
- \(n = 4\): \(B = \frac{12 - 1}{6} = \frac{11}{6}\) ❌
Không thỏa mãn.
Quay lại với cặp đúng đã tìm được:
\(\left(\right. m , n \left.\right) = \left(\right. 1 , 1 \left.\right) \Rightarrow A = 1 , B = 1 (đ \overset{ˋ}{\hat{\text{e}}} \text{u}\&\text{nbsp};\text{nguy} \hat{\text{e}} \text{n}\&\text{nbsp};\text{d}ưo\text{ng})\)
Bước 3: Giả sử \(A = a , B = b \in \mathbb{Z}^{+}\)
Từ:
\(\frac{3 m - 1}{2 n} = a \Rightarrow 3 m - 1 = 2 a n \Rightarrow 3 m = 2 a n + 1 \Rightarrow m = \frac{2 a n + 1}{3}\)
Tương tự:
\(\frac{3 n - 1}{2 m} = b \Rightarrow 3 n - 1 = 2 b m \Rightarrow 3 n = 2 b m + 1 \Rightarrow n = \frac{2 b m + 1}{3}\)
Thế \(m\) từ biểu thức 1 vào biểu thức 2:
\(n = \frac{2 b \cdot \left(\right. \frac{2 a n + 1}{3} \left.\right) + 1}{3} = \frac{\frac{4 a b n + 2 b}{3} + 1}{3} = \frac{4 a b n + 2 b + 3}{9}\)
Đặt \(x = n\), phương trình:
\(x = \frac{4 a b x + 2 b + 3}{9} \Rightarrow 9 x = 4 a b x + 2 b + 3 \Rightarrow x \left(\right. 9 - 4 a b \left.\right) = 2 b + 3\)
⇒ \(x = \frac{2 b + 3}{9 - 4 a b}\)
Để \(x = n \in \mathbb{Z}^{+}\), mẫu phải chia hết tử ⇒ xét vài giá trị \(a , b\)
Thử \(a = 1 , b = 1\):
\(x = \frac{2 \left(\right. 1 \left.\right) + 3}{9 - 4 \left(\right. 1 \left.\right) \left(\right. 1 \left.\right)} = \frac{5}{5} = 1 \Rightarrow n = 1 \Rightarrow m = \frac{2 \left(\right. 1 \left.\right) \left(\right. 1 \left.\right) + 1}{3} = \frac{3}{3} = 1\)
✅ Đúng rồi.
Các cặp khác?
Thử \(a = 2 , b = 1\):
\(x = \frac{2 \left(\right. 1 \left.\right) + 3}{9 - 4 \left(\right. 2 \left.\right) \left(\right. 1 \left.\right)} = \frac{5}{9 - 8} = \frac{5}{1} = 5 \Rightarrow n = 5 \Rightarrow m = \frac{2 \left(\right. 2 \left.\right) \left(\right. 5 \left.\right) + 1}{3} = \frac{21}{3} = 7\)
Kiểm tra:
- \(A = \frac{3 \cdot 7 - 1}{2 \cdot 5} = \frac{20}{10} = 2\)
- \(B = \frac{3 \cdot 5 - 1}{2 \cdot 7} = \frac{14}{14} = 1\)
✅ Đúng.
Kết luận:
Các cặp \(\left(\right. m , n \left.\right)\) nguyên dương sao cho cả hai biểu thức đều nguyên dương gồm:
- \(\left(\right. 1 , 1 \left.\right)\)
- \(\left(\right. 7 , 5 \left.\right)\)
Bạn có thể tìm thêm bằng cách thử các giá trị \(a , b \in \mathbb{Z}^{+}\) nhỏ, dùng công thức:
\(n = \frac{2 b + 3}{9 - 4 a b} , m = \frac{2 a n + 1}{3}\)

a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

a) Để \(\frac{3}{n+1}\)có giá trị là 1 số tự nhiên thì 3\(⋮\)n+1
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
+) n+1=-1\(\Rightarrow\)n=-2 (không thỏa mãn)
+) n+1=1\(\Rightarrow\)n=2 (thỏa mãn)
+) n+1=-2\(\Rightarrow\)n=-3 (không thỏa mãn)
+) n+1=2\(\Rightarrow\)n=3 (thỏa mãn)
Vậy \(n\in\left\{2;3\right\}\)
b) Để \(\frac{13}{3n+1}\)có giá trị là 1 số tự nhiên thì 13\(⋮\)3n+1
\(\Rightarrow3n+1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
...
c) Để \(\frac{10}{2n+1}\)có giá trị là 1 số tự nhiên thì 10\(⋮\)2n+1
\(\Rightarrow2n+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
...

a) \(\frac{n-4}{n+2}=\frac{n+2}{n+2}-\frac{6}{n+2}=1-\frac{6}{n+2}\). Để \(\frac{n-4}{n+2}\)là số nguyên âm \(\Leftrightarrow n+2\inƯ^-\left(6\right)\)
\(\Leftrightarrow n+2\in\left\{-6;-3;-2;-1\right\}\Leftrightarrow n\in\left\{-8;-5;-4;-3\right\}\)
Ư- là ước nguyên âm nha !
Mấy phần b) c) tương tự, mình chỉ làm mẫu phần a) , còn 2 phần còn lại coi như là luyện tập cho bạn đi !
TH1 3m-1/2n là dương suy ra 3m-1 chia hết cho 2n
Để 3m-1 chia hết cho 2n suy ra 3m-1 là chẵn
suy ra 3m là lẻ
suy ra m là lẻ và n có thể là bất kì số nào(n,m thuộc N)
TH2
3n-1/2m là dương suy ra 3n-1 chia hết cho 2m
Để 3n-1 chia hết cho 2m suy ra 3n-1 là chẵn
suy ra 3n là lẻ
suy ra n là lẻ và m có thể là bất kì số nào(n,m thuộc N)
vậy n,m là lẻ
THỬ lại đi sai rùi