Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: 2n+4 là bội của n-1
=>2n+4⋮n-1
=>2n-2+6⋮n-1
=>6⋮n-1
=>n-1∈{1;-1;2;-2;3;-3;6;-6}
=>n∈{2;0;3;-1;4;-2;7;-5}
mà n là số tự nhiên
nên n∈{2;0;3;4;7}
b: 2n-1 là ước của 3n+2
=>3n+2⋮2n-1
=>6n+4⋮2n-1
=>6n-3+7⋮2n-1
=>7⋮2n-1
=>2n-1∈{1;-1;7;-7}
=>2n∈{2;0;8;-6}
=>n∈{1;0;4;-3}
mà n là số tự nhiên
nên n∈{1;0;4}
c: n-1 là ước của \(n^2+1\)
=>\(n^2+1\vdots n-1\)
=>\(n^2-n+n-1+2\vdots n-1\)
=>\(2\vdots n-1\)
=>n-1∈{1;-1;2;-2}
=>n∈{2;0;3;-1}
mà n là số tự nhiên
nên n∈{2;0;3}
d: \(n^2+3n+15\) là bội của n+3
=>\(n^2+3n+15\vdots n+3\)
=>n(n+3)+15⋮n+3
=>15⋮n+3
=>n+3∈{1;-1;3;-3;5;-5;15;-15}
=>n∈{-2;-4;0;-6;2;-8;12;-18}
mà n là số tự nhiên
nên n∈{0;2;12}

a: 2n+4 là bội của n-1
=>2n+4⋮n-1
=>2n-2+6⋮n-1
=>6⋮n-1
=>n-1∈{1;-1;2;-2;3;-3;6;-6}
=>n∈{2;0;3;-1;4;-2;7;-5}
mà n là số tự nhiên
nên n∈{2;0;3;4;7}
b: 2n-1 là ước của 3n+2
=>3n+2⋮2n-1
=>6n+4⋮2n-1
=>6n-3+7⋮2n-1
=>7⋮2n-1
=>2n-1∈{1;-1;7;-7}
=>2n∈{2;0;8;-6}
=>n∈{1;0;4;-3}
mà n là số tự nhiên
nên n∈{1;0;4}
c: n-1 là ước của \(n^2+1\)
=>\(n^2+1\vdots n-1\)
=>\(n^2-n+n-1+2\vdots n-1\)
=>\(2\vdots n-1\)
=>n-1∈{1;-1;2;-2}
=>n∈{2;0;3;-1}
mà n là số tự nhiên
nên n∈{2;0;3}
d: \(n^2+3n+15\) là bội của n+3
=>\(n^2+3n+15\vdots n+3\)
=>n(n+3)+15⋮n+3
=>15⋮n+3
=>n+3∈{1;-1;3;-3;5;-5;15;-15}
=>n∈{-2;-4;0;-6;2;-8;12;-18}
mà n là số tự nhiên
nên n∈{0;2;12}

\(a,n+6⋮n\)
\(\Rightarrow6⋮n\)
\(\Rightarrow n\inƯ\left(6\right)\)
\(\Rightarrow n\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(b,n+9⋮n+1\)
\(\Rightarrow n+1+8⋮n+1\)
\(\Rightarrow8⋮n+1\)
\(\Rightarrow n+1\inƯ\left(8\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\)
\(c,n-5⋮n+1\)
\(\Rightarrow n+1-6⋮n+1\)
\(\Rightarrow6⋮n+1\)
\(\Rightarrow n+1\inƯ\left(6\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;0;-4;2;-7;5\right\}\)
\(d,2n+7⋮n-2\)
\(\Rightarrow2n-4+11⋮n-2\)
\(\Rightarrow2\left(n-2\right)+11⋮n-2\)
\(\Rightarrow11⋮n-2\)
\(\Rightarrow n-2\inƯ\left(11\right)\)
\(\Rightarrow n-2\in\left\{-1;1;-11;11\right\}\)
\(\Rightarrow n\in\left\{1;3;-9;13\right\}\)

* * *
câu a hình như thiếu đề
b) ab+ba
= 10a+b+10b+a
= 11a + 11b (Phần sau tự c/m vì nó dễ)
c)Hướng dẫn:phá ngoặc đi, kết quả cho ra 3n + 9,rồi lập luận
* * *
a)Gọi 5 số đó là a,a+1,a+2,a+3,a+4 ( a,a+1,a+2,a+3,a+4 \(\in\)N )
Ta có: a+(a+1)+(a+2)+(a+3)+(a+4)
= a+a+1+a+2+a+3+a+4
= 5a +( 1+2+3+4)
= 5a + 10 (Phần sau tự c/m)
b)tương tự câu a, nhưng kết quả cuối = 6a + 15 ko chia hết cho 6(gọi 6 số đó là a,a+1,a+2,a+3,a+4,a+5(a,a+1,...)...)
Hok tốt!!!! ^_^

\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)

a, \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}=k\)
\(\Rightarrow\hept{\begin{cases}a=5k\\b=6k\\c=7k\end{cases}}\)
\(\Rightarrow ab=5k\cdot6k=30k^2\)
\(\Rightarrow30k^2=3000\)
\(\Rightarrow k^2=100\)
\(\Rightarrow k=\pm10\)
\(k=10\Rightarrow\hept{\begin{cases}a=5\cdot10=50\\b=6\cdot10=60\\c=7\cdot10=70\end{cases}}\)
b, \(\frac{a}{5}=\frac{b}{6}=\frac{c}{7}\)
\(\Rightarrow\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow\frac{a^2-b^2+c^2}{25-36+49}=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow\frac{152}{38}=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow4=\frac{a^2}{25}=\frac{b^2}{36}=\frac{c^2}{49}\)
\(\Rightarrow\hept{\begin{cases}a^2=4\cdot25=100\\b^2=4\cdot36=144\\c^2=4\cdot49=196\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=\pm10\\b=\pm12\\c=\pm14\end{cases}}\)
Đáp án cần chọn là: A