\(\varepsilon\) Z thỏa mãn:

\(\sqrt{a+a\sqrt{3}}=b+\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 9 2019

ĐKXĐ: \(b>-2\)

\(\Leftrightarrow a+a\sqrt{3}=\left(b+\sqrt{3}\right)^2=b^2+3+2\sqrt{3}b\)

\(\Leftrightarrow\left(a-2b\right)\sqrt{3}=b^2-a+3\)

Do VP là số nguyên nên VT là số nguyên

\(\Leftrightarrow\left\{{}\begin{matrix}a-2b=0\\b^2-a+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2b\\b^2-a+3=0\end{matrix}\right.\)

\(\Rightarrow b^2-2b+3=0\) (vô nghiệm)

Vậy ko tồn tại a; b nguyên thỏa mãn

24 tháng 9 2019

thanks bạn nhìu nha

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3 

22 tháng 8 2020
 

Giúp tôi giải toán và làm văn

 
 Tìm kiếm 
 

Tất cảToánVăn - Tiếng ViệtTiếng Anh

Nguyễn Thành Vinh
Nguyễn Thành Vinh
Trả lời
59
 
Đánh dấu

26 tháng 7 2016 lúc 15:48

I don't need nghĩa là gì , đoán đúng cho 10 nghìn ,cấm tra google dịch

Được cập nhật Vài giây trước

Toán lớp 4 Đố vui
 
avt3898343_60by60.jpg
avt588689_60by60.jpgmori ran and kudo sinichi 28 tháng 7 2016 lúc 20:11
Thống kê hỏi đáp
 Báo cáo sai phạm

i don't need la tao ko can

 Đúng 8  Sai 2
avt625280_60by60.jpgsakura 2 tháng 8 2016 lúc 19:21
Thống kê hỏi đáp
 Báo cáo sai phạm

Ôi trời câu hỏi của bạn trờ thành câu trả lời luôn hả ?

 Đúng 5  Sai 0
avt2841037_60by60.jpgNguyễn Quỳnh Ngân 18 tháng 1 2019 lúc 19:52
Thống kê hỏi đáp
 Báo cáo sai phạm

ngu đâu mà trả lời .

hứ

 Đúng 4  Sai 1
Nguyễn Ngọc Linh
Nguyễn Ngọc Linh
Trả lời
3
 
Đánh dấu

10 tháng 3 lúc 14:50

Choa0,b0 Chứng minh bất đẳng thức Cauchy : a+b2 ab

Được cập nhật 2 phút trước

Toán lớp 8
 
avt3898343_60by60.jpg
avt1037271_60by60.jpgミ★NVĐ^^★彡 10 tháng 3 lúc 14:53
Thống kê hỏi đáp
 Báo cáo sai phạm

BĐT tương đương :

a+b2ab

(a+b)24ab

(ab)20 ( luôn đúng )

Vậy ta có đpcm

Dấu "=" xảy ra a=b

Đọc tiếp...
 Đúng 2  Sai 1
31 tháng 5 2019

b, Ta có 

\(\frac{\sqrt{x}+1}{y+1}=\frac{\left(\sqrt{x}+1\right)\left(y+1\right)-y-y\sqrt{x}}{y+1}=\sqrt{x}+1-\frac{y\left(\sqrt{x}+1\right)}{y+1}\)

Mà \(y+1\ge2\sqrt{y}\)

=> \(\frac{\sqrt{x}+1}{y+1}\ge\sqrt{x}+1-\frac{1}{2}\sqrt{y}\left(\sqrt{x}+1\right)\)

Khi đó

\(P\ge\frac{1}{2}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3-\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)

Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}=3\)

=> \(P\ge\frac{1}{2}.3+3-\frac{3}{2}=3\)

Vậy MinP=3 khi x=y=z=1

7 tháng 1 2019

Ta có \(a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}\left(a,b,c>0\right)\)

\(\Leftrightarrow4a+4\sqrt{ab}+4\sqrt[3]{abc}=\frac{16}{3}.\)

\(\Leftrightarrow4a+2.2\sqrt{ab}+\sqrt[3]{64abc}=\frac{16}{3}.\)

\(\Leftrightarrow4a+2\sqrt{a.4b}+\sqrt[3]{a.4b.16c}=\frac{16}{3}.\)(1)

Áp dụng BDT Cauchy cho hai số dương \(a\)và \(4b\)ta được:\(2\sqrt{a.4b}\le a+4b\)(dấu bằng có \(\Leftrightarrow a=4b\))(2)

Áp dụng BDT Cauchy cho ba số dương \(a;4b\)và \(16c\)ta được:\(\sqrt[3]{a.4b.16c}\le\frac{1}{3}\left(a+4b+16c\right).\)(dấu bằng có \(\Leftrightarrow a=4b=16c\))(3)

Từ (1);(2) và (3) suy ra:

 \(\frac{16}{3}\le4a+a+4b+\frac{1}{3}\left(a+4b+16c\right).\)

\(\Leftrightarrow\frac{16}{3}\le5a+4b+\frac{1}{3}a+\frac{4}{3}b+\frac{16}{3}c.\)

\(\Leftrightarrow\frac{16}{3}\le\frac{16}{3}a+\frac{16}{3}b+\frac{16}{3}c.\)

\(\Leftrightarrow\frac{16}{3}\left(a+b+c\right)\ge\frac{16}{3}.\)

\(\Leftrightarrow a+b+c\ge1\)

\(\Rightarrow MinZ=1\)

\(\Leftrightarrow\hept{\begin{cases}a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}.\\a+b+c=1\\a=4b=16c\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{16}{21}\\b=\frac{4}{21}\\c=\frac{1}{21}\end{cases}}\)

Vậy GTNN của \(Z\)là 1 khi và chỉ khi \(a=\frac{16}{21};b=\frac{4}{21};c=\frac{1}{21}.\)

P/S:Trong quá trình làm dù đã rất cố gắng song khó tránh khỏi sai sót;mong bạn lượng thứ.

7 tháng 1 2019

Đình chính:

\(MinZ=1\Leftrightarrow\hept{\begin{cases}a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}\\a=4b=16c\\a+b+c=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{16}{21}\\b=\frac{4}{21}\\c=\frac{1}{21}\end{cases}}}\)

7 tháng 1 2017

\(\frac{5\left(a-b\sqrt{2}\right)-4\left(a+b\sqrt{2}\right)}{a^2-2b^2}+18\sqrt{2}=3\)

\(\left(a-9b\sqrt{2}\right)+\left(a^2-2b^2\right)18\sqrt{2}=3\left(a^2-2b\right)\)

\(\sqrt{2}\left[18\left(a^2-2b^2\right)-9b\right]+a=3\left(a^2-2b\right)\)

\(\sqrt{2}\)là số vô tỷ=> \(\hept{\begin{cases}2a^2-4b^2-b=0\\3a^2-6b-a=0\end{cases}\Leftrightarrow}\) (giải hệ này ra a,b)