
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(P=\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}+2020=\dfrac{x^5+y^5}{\left(xy\right)^2}+2020=\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)-\left(xy\right)^2\left(x+y\right)}{\left(-2\right)^2}\)
\(=\dfrac{\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\left[\left(x+y\right)^2-2xy\right]-\left(-2\right)^2.5}{4}\)
\(=\dfrac{\left(-8+6.5\right)\left(25+4\right)-20}{4}=...\)

Lời giải:
$x^2+y^2-xy-3x+3=0$
$\Leftrightarrow (y^2-xy+\frac{x^2}{4})+(\frac{3}{4}x^2-3x+3)=0$
$\Leftrightarrow (y-\frac{x}{2})^2+3(\frac{x}{2}-1)^2=0$
Do $(y-\frac{x}{2})^2\geq 0; 3(\frac{x}{2}-1)^2\geq 0$ với mọi $x,y$
Do đó để tổng của chúng bằng $0$ thì:
$(y-\frac{x}{2})^2=3(\frac{x}{2}-1)^2=0$
$\Leftrightarrow y=\frac{x}{2}; \frac{x}{2}=1$
$\Leftrightarrow x=2; y=1$
Cho 2 số thực x,y thỏa mãn x>y và x.y= 2
Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{x^2+y^2}{x-y}\)

Ta có: \(A=\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{4}{x-y}\)
Áp dụng BĐT Cô-si cho 2 số không âm, ta có:
\(A=\left(x-y\right)+\frac{4}{\left(x-y\right)}\ge2\sqrt{\left(x-y\right)\frac{4}{x-y}}=4\)
Dấu bằng xảy ra khi \(\left(x;y\right)=\left(\sqrt{3}+1;\sqrt{3}-1\right);\left(1-\sqrt{3};-1-\sqrt{3}\right)\)

bn ơi bn vào link này nhek bài thứ 2 từ cuối lên nhek https://diendantoanhoc.net/topic/151447-cho-x3-y3-3x2-y2-4xy-4-0-xy0-t%C3%ACm-max-frac1x-frac1y/

Vì x+y=5 và xy=6 nên x,y là hai nghiệm của phương trình \(x^2-5x+6=0\)
=>(x,y) có thể là (2,3) hoặc là (3,2)

nói thật bạn trả lời bên dưới nha trả lời vậy trả lời làm cl.Mình đg tìm lời giải rên mạng mà cx phải lập cái nick góp y đó

Phương trình đề bài cho tương đương:
\(\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Rightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Rightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
\(\Rightarrow x+y+2=0\) (thừa số thứ 2 luôn > 0)
\(\Rightarrow x+y=-2\)
Ta có: \(\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\left(-2\right)^2\ge4xy\Rightarrow xy\le1\)
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\le-\frac{2}{1}=-2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x+y=-2\end{cases}\Rightarrow x=y=-1}\)
Bạn ơi tại sao: \(\left(x+y+z\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
x + y = 3 => y = 3 - x
Ta có:
x.y = -28
<=> x.(3-x) = -28
<=> 3x - x^2 = -28
<=> -x^2 + 3x + 28 = 0
Tới đây giải pt bậc 2 là ra nhé