Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kẻ AH vuông góc với AB tại A( AH thuộc BI). Kẻ AK vuông góc với BI. Tự chứng minh tam giác AIH cân tại A => AH=AI = 2 căn 5. => IK= KH= x( x>0) Xét tam giác ABH vuông tại A=> AH2= HK x BH <=> AH2= x(2x+3). Mà AH= 2 căn 5 => x(2x+3)= 20=>x=2.5 Có AB2= BH.BK= (3+x)(3+2x)=44 => AB= 2 căn 11
Tự vẽ hình nha
giải
Kẻ AH vuông góc với AB tại A ( AH thuộc BI ) kẻ AK vuông góc với BI
Tự chứng minh tam giác AIH cân tại A => AH = AI = 2 căn 5
=> IK = KH = x ( x > 0 )
Xét tam giác ABH vuông tại A => AH2 = HK x BH
=> AH2 = x ( 2x + 3 ) mà AH = 2 căn 5
=> x ( 2x + 3 ) = 20 => x = 2.5
Có AB2 = BH x BK = ( 3 + x )( 3 + 2x )=44 => AB = 2 căn 11
Hok tốt ^^

B A C I K H x
Gọi chân đường cao hạ từ A của tam giác ABC là H, K là giao của phân giác ngoài góc B và AH.
Đặt \(IH=x\left(x>0\right)\)
Theo hệ thức lượng: \(IB^2=IH.IK\Rightarrow IK=\frac{IB^2}{IH}=\frac{9}{x},KH=IK-IH=\frac{9}{x}-x\)
Theo định lí đường phân giác, ta có: \(\frac{IH}{IA}=\frac{KH}{KA}\)
Hay \(\frac{x}{2\sqrt{5}}=\frac{\frac{9}{x}-x}{\frac{9}{x}+2\sqrt{5}}\Leftrightarrow9+2\sqrt{5}x=\frac{18\sqrt{5}}{x}-2\sqrt{5}x\)
\(\Leftrightarrow4\sqrt{5}x^2+9x-18\sqrt{5}=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3\sqrt{5}}{4}\\x=-\frac{6\sqrt{5}}{5}\left(l\right)\end{cases}}\)
Vậy \(AB=\sqrt{HA^2+HB^2}=\sqrt{\left(IH+IA\right)^2+IB^2-IH^2}\)
\(=\sqrt{\left(\frac{3\sqrt{5}}{4}+2\sqrt{5}\right)^2+3^2-\left(\frac{3\sqrt{5}}{4}\right)^2}=2\sqrt{11}.\)

Kẻ CH ⊥ BI và CH cắt BA tại D. Tam giác BCD có BH vừa là phân giác vừa là đường cao => Tam giác BCD cân tại B => BH là đường trung tuyến luôn => CH = DH. và DC = 2HC.
Đặt BC = x() Ta có: AD = BD - AB = BC - AB = x - 5
Gọi giao điểm của AC và BH là E.
Xét tam giác AEB và tam giác HEC có góc EAB = góc EHC = 90độ và góc AEB = góc HEC (đối đỉnh)
=> tam giác AEB ~ tam giác HEC(g.g)
=> Góc HCE = góc ABE.
=> Góc HCE = góc ABC/2 (1)
Mà Góc ECI = gócACB/2 (2)
Từ (1) và (2) => Góc ICH = Góc HCE + Góc ECI = (gócABC + góc ACB)/2 = 90độ/2 = 45độ.
Xét tam giác HIC có góc IHC = 90độ và Góc ICH = 45 độ (góc còn lại chắc chắn = 45 độ)
=> tam giác HIC vuông cân tại H => HI = HC.
Áp dụng đinh lý Py-ta-go cho tam giác này ta được: 2CH² = IC²
=> √2.CH = IC
=> CH = (IC)/(√2)
=> CH = 6/(√2)
=> DC = 2CH = 12/(√2) = 6√2
Xét tam giác: ADC có góc DAC = 90độ
=> Áp dụng định lý Py-ta-go ta có: DC² = AD² + AC²
=> AC² = DC² - AD²
=> AC² = (6√2)² - (x - 5)² (3)
Tương tự đối với tam giác ABC ta có: AC² = BC² - AB²
=> AC² = x² - 5² (4)
Từ (3) và (4) => (6√2)² - (x - 5)² = x² - 5²
<=> 72 - (x² - 10x + 25) = x² - 25
<=> 72 - x² + 10x - 25 - x² + 25 = 0
<=> -2x² + 10x + 72 = 0
<=> x² - 5x - 36 = 0
<=> x² - 9x + 4x - 36 = 0
<=> x(x - 9) + 4(x - 9) = 0
<=> (x - 9)(x + 4) = 0
<=> x - 9 = 0 hoặc x + 4 = 0
<=> x = 9 hoặc x = -4
=> chỉ có giá trị x = -9 là thoả mãn đk x > 5
=> BC = 5cm
kẻ bí mật làm đùng rồi
tk mình nhé chúc bạn học giỏi ^-^