
\(\sqrt{4x}\) - \(\sqrt{9x}\) + \(\sqrt{...">
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời. Mình làm một vài câu thôi nhé, các câu còn lại tương tự. Giải: a) ??? Đề thiếu b) \(\sqrt{-3x+4}=12\) \(\Leftrightarrow-3x+4=144\) \(\Leftrightarrow-3x=140\) \(\Leftrightarrow x=\dfrac{-140}{3}\) Vậy ... c), d), g), h), i), p), q), v), a') Tương tự b) w), x) Mình đã làm ở đây: Câu hỏi của Ami Yên - Toán lớp 9 | Học trực tuyến z) \(\sqrt{16\left(x+1\right)^2}-\sqrt{9\left(x+1\right)^2}=4\) \(\Leftrightarrow4\left(x+1\right)-3\left(x+1\right)=4\) \(\Leftrightarrow x+1=4\) \(\Leftrightarrow x=3\) Vậy ... b') \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\) \(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+1}\) \(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-\sqrt{x+1}=0\) \(\Leftrightarrow4\sqrt{x+1}=0\) \(\Leftrightarrow x+1=0\) \(\Leftrightarrow x=-1\) Vậy ... - Câu a có chút thiếu sót, mong thông cảm :) \(\sqrt{3x-1}\) = 4 \(\sqrt{4x^2}=6\Rightarrow\left|2x\right|=6\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-6\end{matrix}\right.\) \(\Rightarrow x=\pm3\) b/ ĐKXĐ: \(x\ge0\) \(\sqrt{16x}=8\Leftrightarrow16x=64\Rightarrow x=4\) c/ ĐKXĐ: \(x\ge1\) \(\sqrt{9\left(x-1\right)}=21\Leftrightarrow\sqrt{x-1}=7\Leftrightarrow x-1=49\Rightarrow x=50\) d/ \(\sqrt{4\left(1-x\right)^2}=6\Leftrightarrow2\left|1-x\right|=6\Leftrightarrow\left|1-x\right|=3\Rightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\) e/ \(\sqrt{1-4x+4x^2}=5\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\) f/ĐKXĐ: \(x\ge-\frac{1}{2}\) \(\sqrt{9x^2}=2x+1\Leftrightarrow\left|3x\right|=2x+1\Leftrightarrow\left[{}\begin{matrix}3x=2x+1\\-3x=2x+1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{5}\end{matrix}\right.\) b) \(\sqrt{4x}-\sqrt{9x}+\sqrt{25x}=2\sqrt{x}-3\sqrt{x}+5\sqrt{x}=4\sqrt{x}\) bài 1: a)\(\left(3-\sqrt{2}\right)\sqrt{7+4\sqrt{3}}\) \(=\left(3-\sqrt{2}\right)\sqrt{\left(2+\sqrt{3}\right)^2}\) \(=\left(3-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)\(do2>\sqrt{3}\) \(=6+3\sqrt{3}-2\sqrt{2}-\sqrt{6}\) b) \(\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}\) \(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\) \(=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)do\sqrt{5}>\sqrt{2}\) \(=\sqrt{15}-\sqrt{6}+5-\sqrt{10}\) c)\(\left(2+\sqrt{5}\right)\sqrt{9-4\sqrt{5}}\) \(=\left(2+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-2\right)^2}\) \(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)do\sqrt{5}>2\) \(=5-4\) \(=1\left(hđt.3\right)\) d)\(\left(\sqrt{6}+\sqrt{10}\right)\sqrt{4-\sqrt{15}}\) \(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\sqrt{4-\sqrt{15}}\) \(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{8-2\sqrt{15}}\) \(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\) \(=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)do\sqrt{5}>\sqrt{3}\) \(=5-3\) \(=2\) e)\(\sqrt{2}\left(\sqrt{8}-\sqrt{32}+3\sqrt{18}\right)\) \(=\sqrt{2}\left(2\sqrt{2}-4\sqrt{2}+9\sqrt{2}\right)\) \(=2\left(2-4+9\right)\) \(=2.7=14\) f)\(\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\) \(=2-\sqrt{6-2\sqrt{5}}\) \(=2-\sqrt{\left(\sqrt{5}-1\right)^2}\) \(=2-\left(\sqrt{5}-1\right)\) \(=2-\sqrt{5}+1\) \(=3-\sqrt{5}\) g)\(\sqrt{3}-\sqrt{2}\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\) \(=\sqrt{3}-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)\) \(=\sqrt{3}-\sqrt{6}-2\) h) \(\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right)\sqrt{2}+2\sqrt{5}\) \(=\left(2-\sqrt{6+2\sqrt{5}}\right)+2\sqrt{5}\) \(=\left(2-\sqrt{\left(\sqrt{5}+1\right)^2}\right)+2\sqrt{5}\) \(=2-\left(\sqrt{5}+1\right)+2\sqrt{5}\left(do\sqrt{5}>1\right)\) \(=2-\sqrt{5}-1+2\sqrt{5}\) \(=1-\sqrt{5}\) bài 2) a) \(\sqrt{4x^2-4x+1}=5\) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\) \(\Leftrightarrow2x-1=5\)hoặc \(\Leftrightarrow2x-1=-5\) \(\Leftrightarrow x=3\)hoặc \(\Leftrightarrow x=-2\) Vậy x = 3 hoặc x = -2 \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\) \(\Leftrightarrow4\sqrt{x+1}=16\) \(\Leftrightarrow\sqrt{x+1}=4\) <=> x + 1 = 16 <=> x = 15 (nhận) ~ ~ ~ \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\) \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\) \(\Leftrightarrow3\sqrt{x+5}=6\) \(\Leftrightarrow\sqrt{x+5}=2\) <=> x + 5 = 4 <=> x = - 1 (nhận) bài 2 rút gọn : a) \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}\) = \(\left|1-\sqrt{2}\right|+\left|\sqrt{2}-3\right|\) =\(\sqrt{2}-1+3-\sqrt{2}\) =2 b) \(\sqrt{4-2\sqrt{3}}+\sqrt{7}-\sqrt{48}\) = \(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{7}-4\sqrt{3}\) = \(\sqrt{3}-1+\sqrt{7}-4\sqrt{3}\) = \(\sqrt{7}-3\sqrt{3}+1\) c)