
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Câu 1:
\(a^3+a^2b-ab^2-b^3\)
\(=a^2\left(a+b\right)-b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-b^2\right)\)
\(=\left(a+b\right)\left(a-b\right)\left(a+b\right)\)
\(=\left(a+b\right)^2\left(a-b\right)\)
Câu 2:
\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
\(=a\left(b^3-c^3\right)+bc^3-a^3b+a^3c-b^3c\)
\(=a\left(b-c\right)\left(b^2+bc+c^2\right)-a^3\left(b-c\right)-bc\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(ab^2+abc+c^2a-a^3-b^2c-bc^2\right)\)
\(=\left(b-c\right)\left[a\left(c-a\right)\left(c+a\right)-b^2\left(c-a\right)-bc\left(c-a\right)\right]\)
\(=\left(b-c\right)\left(c-a\right)\left(ca+a^2-b^2-bc\right)\)
\(=\left(b-c\right)\left(c-a\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

2x2 + 2y2 + b2 + 3xy - bx - by = 0
<=> 4x2 + 4y2 + 2b2 + 6xy - 2bx - 2by = 0
<=> (x2 - 2bx + b2) + (y2 - 2by + y2) + (3x2 + 6xy + 3y2) = 0
<=> (x - b)2 + (y - b)2 + 3(x + y)2 = 0
Ta thấy VT > 0 nên không có nghiệm.
PS: Không phải phân tích nhân tử mà là giải phương trình nhé.

Câu 1:
\(a^2+2ab+b^2-2a-2b+1\)
\(=\left(a+b\right)^2-2\left(a+b\right)+1\)
\(=\left(a+b-1\right)^2\)
Câu 2:
Xét BToán \(x+y+z=0\Leftrightarrow x^3+y^3+z^3=3xyz\)
Mà \(\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)
\(\Rightarrow\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

2) a) \(x^2-3=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
b) \(x^2-6=\left(x-\sqrt{6}\right).\left(x+\sqrt{6}\right)\)
c) = \(x^2+2x.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)
d) = \(x^2-2x\sqrt{5}+\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)^2\)

\(a^2-b^2-a-b=\left(a+b\right)\left(a-b\right)-\left(a+b\right)=\left(a+b\right)\left(a-b-1\right)\)

b)Thay (y-x)2 bằng (x-y)2, sau đó đặt nhân tử
e)Nhóm 3 số cuối vào 1 nhóm
f)Áp dụng HĐT thứ 3 bình thường