Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)
Biến cố AB: Số ghi trên thẻ được chọn chia hết cho cả 2 và 3.
b) Hai biến cố A và B không độc lập.
Điều này xảy ra vì nếu một số chia hết cho 2 thì nó có thể chia hết cho 3 (ví dụ: số 6), và ngược lại, nếu một số chia hết cho 3 thì nó cũng có thể chia hết cho 2 (ví dụ: số 6). => Do đó, kết quả của biến cố A ảnh hưởng đến biến cố B và ngược lại, không đảm bảo tính độc lập giữa hai biến cố này.
$HaNa$

+ Từ 1 đến 100 có 33 số chia hết cho 3. Do đó, số cách chọn 5 tấm thẻ mà không có tấm thẻ nào ghi số chia hết cho 3 là:
Vậy .
Chọn D.

a) Không gian mẫu là tập hợp các số từ 1 đến 25, được ký hiệu là Ω = 1,2,3,…,25.
b) Biến cố P là tập hợp các số chia hết cho 4, được ký hiệu là P = {4,8,12,16,20,24}.
Biến cố Q là tập hợp các số chia hết cho 6, được ký hiệu là Q = {6,12,18,24}.
Biến cố S là giao của hai biến cố P và Q, nghĩa là các số vừa chia hết cho 4 và vừa chia hết cho 6, được ký hiệu là S = P ∩ Q = {12,24}.
Vậy P, Q và S lần lượt là các tập con của không gian mẫu Ω.
a: Ω={1;2;3;...;25}
n(Ω)=25
b: S=PQ là số ghi trên tấm thẻ vừa chia hết cho 4 vừa chia hết cho 6
P={4;8;12;16;20;24}
Q={6;12;18;24}
S={12;24}
Biến cố P,Q,S lần lượt là các tập hợp con của không gian mẫu

Trong 100 tấm thẻ có 50 tấm được ghi các số chẵn, do đó
Chọn C.

a. Chia các số thành 3 tập hợp:
\(A=\left\{3;6;9;12;15;18\right\}\) gồm 6 số chia hết cho 3
\(B=\left\{1;4;7;10;13;16;19\right\}\) gồm 7 số chia 3 dư 1
\(C=\left\{2;5;8;11;14;17\right\}\) gồm 6 số chia 3 dư 2
Tổng 3 số là 1 số chia hết cho 3 khi (cả 3 số đều thuộc cùng 1 tập) hoặc (3 số thuộc 3 tập khác nhau)
Số cách thỏa mãn:
\(C_6^3+C_7^3+C_6^3+C_6^1.C_7^1.C_6^1=...\)
b.
Câu b chắc người ra đề hơi rảnh rỗi?
Chia thành các tập:
\(A_1=\left\{5;10;15\right\}\) gồm 3 số chia hết cho 5
\(B_1=\left\{1;6;11;16\right\}\) 4 số chia 5 dư 1
\(C_1=\left\{2;7;12;17\right\}\) 4 số chia 5 dư 2
\(D_1=\left\{3;8;13;18\right\}\) 4 số
\(E_1=\left\{4;9;14;19\right\}\) 4 số
Tổng 3 số chia hết cho 5 khi (3 số chia hết cho 5), (1 số chia hết cho 5, 1 số dư 1, 1 số dư 4), (1 chia hết, 1 dư 2, 1 dư 3), (2 dư 1, 1 dư 3), (1 dư 1, 2 dư 2), (1 dư 2, 2 dư 4), (2 dư 3, 1 dư 4)
Số cách:
\(C_3^3+C_3^1.C_4^1.C_4^1+C_3^1.C_4^1.C_4^1+4.C_4^2.C_4^1=...\)

Phép thử T được xét là: "Từ hộp đã cho, lấy ngẫu nhiên một thẻ".
a) Không gian mẫu được mô tả bởi tập
Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
b) A = {1, 2, 3, 4, 5};
B = {7, 8, 9, 10};
C = {2, 4, 6, 8, 10}.

a. Không gian mẫu gồm 10 phần tử:
Ω = {1, 2, 3, …, 10}
b. A, B, C "là các biến cố".
+ A: "Lấy được thẻ màu đỏ"
⇒ A = {1, 2, 3, 4, 5}
+ B: "Lấy được thẻ màu trắng"
⇒ B = {7, 8, 9, 10}
+ C: "Lấy được thẻ ghi số chắn".
⇒ C = {2, 4, 6, 8, 10}

A = {1; 2; 3; 4; 5; 6; 10; 12; 15; 20; 30; 60}
B = {1; 2; 3; 4; 6; 8; 12; 16; 24; 48}
\( \Rightarrow \) AB = {1; 2; 3; 4; 12}
Ta có \(P\left( A \right) = \frac{{12}}{{60}} = \frac{1}{5};P\left( B \right) = \frac{{10}}{{60}} = \frac{1}{6};P\left( {AB} \right) = \frac{5}{{60}} = \frac{1}{{12}}\)
Mặt khác \(P\left( A \right).P\left( B \right) = \frac{1}{5}.\frac{1}{6} = \frac{1}{{30}}\)
Vì \(P\left( {AB} \right) \ne P\left( A \right).P\left( B \right)\) nên hai biến cố A và B không độc lập.