Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi chiều rộng mảnh đất hình chữ nhật là x (m) (x>0)
=> chiều dài mảnh đất là x+6 (m)
Theo định lý Pytago ta có độ dài đường chéo là:
√x2+(x+6)2=√2x2+12x+36(m)⇒√2x2+12x+36=√654.x⇒2x2+12x+36=6516x2⇒−3316x2+12x+36=0⇒⎡⎣

Nửa chu vi mảnh đất là:
40:2=20(m)
Ta lấy các số có tổng là 20 và hai số nhân lạ được 96
12x8=96(m2)
Đs: Chiều dài:12m
Chiều rộng:8m

Câu 1:
Gọi x là chiều dài mảnh đất (0<x<14; x>y)
Gọi y là chiều rộng mảnh vườn (0<y<14)
Vì chu vi mảnh đất bằng 20m nên ta có PT: x+y=14 (1)
Vì đường chéo mảnh đất bằng 10m nên ta có PT:
x2+y2=100 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=14\\x^2+y^2=100\end{matrix}\right.\)(HPT dễ rồi bạn tự giải nha)
⇔\(\left\{{}\begin{matrix}y=8\\y=6\end{matrix}\right.\)(TM)
Vậy ta có 2 tập nghiệm (x;y) là (6;8) và (8;6)
-Độ dài 2 cạnh mảnh đất lần lượt là: 6cm và 8cm
Câu 1:
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì chu vi mảnh đất là 28m nên ta có phương trình:
2(a+b)=28
hay a+b=14(1)
Vì đường chéo hình chữ nhật là 10m nên Áp dụng định lí Pytago, ta được:
\(a^2+b^2=100\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=14\\a^2+b^2=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(14-b\right)^2+b^2=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-28b+196+b^2-100=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\2b^2-28b+96=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-14b+48=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(b-6\right)\left(b-8\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=14-8=6\\b=14-6=8\end{matrix}\right.\\\left[{}\begin{matrix}b=6\\b=8\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=6\end{matrix}\right.\)(thỏa ĐK)
Vậy: Độ dài hai cạnh của mảnh đất hình chữ nhật lần lượt là 8m và 6m

Gọi:
- \(x\) là chiều dài ban đầu (m)
- \(y\) là chiều rộng ban đầu (m)
Theo đề bài:
- Chu vi hình chữ nhật là 64m, tức:
\(2 \left(\right. x + y \left.\right) = 64 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x + y = 32\)
- Khi tăng chiều dài thêm 2m và chiều rộng thêm 3m, diện tích tăng thêm 88 m². Diện tích ban đầu là \(x y\), diện tích sau tăng là \(\left(\right. x + 2 \left.\right) \left(\right. y + 3 \left.\right)\). Do đó:
\(\left(\right. x + 2 \left.\right) \left(\right. y + 3 \left.\right) - x y = 88\)
Mở rộng và đơn giản:
\(x y + 3 x + 2 y + 6 - x y = 88\)\(3 x + 2 y + 6 = 88\)\(3 x + 2 y = 82\)
Hệ phương trình:
\(\left{\right. x + y = 32 \\ 3 x + 2 y = 82\)
Giải hệ:
Từ phương trình thứ nhất:
\(y = 32 - x\)
Thay vào phương trình thứ hai:
\(3 x + 2 \left(\right. 32 - x \left.\right) = 82\)\(3 x + 64 - 2 x = 82\)\(x + 64 = 82\)\(x = 18\)
Thay \(x = 18\) vào:
\(y = 32 - 18 = 14\)
Kết luận:
Chiều dài mảnh vườn là \(\boxed{18 \&\text{nbsp};\text{m}}\), chiều rộng là \(\boxed{14 \&\text{nbsp};\text{m}}\).
Tk
Nửa chu vi mảnh vườn là 64:2=32(m)
Gọi chiều dài và chiều rộng của mảnh vườn lần lượt là x(m) và y(m)
(Điều kiện: x>y>0)
Nửa chu vi mảnh vườn là 32m nên x+y=32(1)
Nếu tăng chiều dài thêm 2m và tăng chiều rộng thêm 3m thì diện tích tăng thêm \(88m^2\)
nên ta có: (x+2)(y+3)=xy+88
=>xy+3x+2y+6=xy+88
=>3x+2y=82(2)
Từ (1),(2) ta có hệ phương trình:
\(\begin{cases}x+y=32\\ 3x+2y=82\end{cases}\Rightarrow\begin{cases}3x+3y=96\\ 3x+2y=82\end{cases}\)
=>\(\begin{cases}3x+3y-3x-2y=96-82\\ x+y=32\end{cases}\Rightarrow\begin{cases}y=14\\ x=32-14=18\end{cases}\) (nhận)
Vậy: chiều dài và chiều rộng của mảnh vườn lần lượt là 18(m) và 14(m)

Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là a, b ( m ) ( \(0< a,b< 110\) )
Theo bài, ta có hệ phương trình: \(\hept{\begin{cases}a-b=17\\ab=110\end{cases}}\)
Đặt \(c=-b\)\(\Rightarrow\hept{\begin{cases}a+c=17\\a.c=-110\end{cases}}\)
\(\Rightarrow\)a và c là nghiệm của của phương trình: \(x^2-17x-110=0\)
\(\Delta=\left(-17\right)^2-4.1.\left(-110\right)=729\)
\(\Rightarrow\sqrt{\Delta}=\sqrt{729}=27\)
\(\Rightarrow x_1=\frac{-\left(-17\right)+27}{2}=\frac{17+27}{2}=\frac{44}{2}=22\)
\(x_2=\frac{-\left(-17\right)-27}{2}=\frac{17-27}{2}=\frac{-10}{2}=-5\)
\(\Rightarrow a=x_1=22\); \(c=x_2=-5\)
mà \(-b=c\)\(\Rightarrow b=-c=-\left(-5\right)=5\)
Vậy chiều dài là 22m, chiều rộng là 5m
Gọi chiều dài và chiều rộng của mảnh đất hình chữ nhật lần lượt là: x, y
(21 > x > y > 0; m)
Vì mảnh đất hình chữ nhật có chu vi bằng 42m nên ta có (x + y). 2 = 42
Đường chéo hình chữ nhật dài 15m nên ta có phương trình: x 2 + y 2 = 152
Suy ra hệ phương trình:
x + y .2 = 42 x 2 + y 2 = 225 ⇔ x + y = 21 x 2 + y 2 = 225 ⇔ y = 21 − x x 2 + 21 − x 2 = 225 1
Giải phương trình (1) ta được:
2 x 2 − 42 x + 216 = 0 ⇔ x = 9 x = 12
Với x = 9 thì y = 12 (loại)
Với x = 12 thì y = 9 (thỏa mãn)
Vậy chiều rộng mảnh đất ban đầu là 9m.
Đáp án: C