K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2018

Gọi chiều dài và chiều rộng của mảnh đất hình chữ nhật lần lượt là: x, y

(21 > x > y > 0; m)

Vì mảnh đất hình chữ nhật có chu vi bằng 42m nên ta có (x + y). 2 = 42

Đường chéo hình chữ nhật dài 15m nên ta có phương trình: x 2   +   y 2   =   152

Suy ra hệ phương trình:

x + y .2 = 42 x 2 + y 2 = 225 ⇔ x + y = 21 x 2 + y 2 = 225 ⇔ y = 21 − x x 2 + 21 − x 2 = 225       1

Giải phương trình (1) ta được:

2 x 2 − 42 x + 216 = 0 ⇔ x = 9 x = 12

Với x = 9 thì y = 12 (loại)

Với x = 12 thì y = 9 (thỏa mãn)

Vậy chiều rộng mảnh đất ban đầu là 9m.

Đáp án: C

Gọi chiều rộng mảnh đất hình chữ nhật là x (m) (x>0)

=> chiều dài mảnh đất là x+6 (m)

Theo định lý Pytago ta có độ dài đường chéo là:

x2+(x+6)2=2x2+12x+36(m)2x2+12x+36=654.x2x2+12x+36=6516x23316x2+12x+36=0

25 tháng 1 2022

loading...  

7 tháng 5 2015

Nửa chu vi mảnh đất là:

40:2=20(m)

Ta lấy các số có tổng là 20 và hai số nhân lạ được 96

12x8=96(m2)

Đs: Chiều dài:12m

      Chiều rộng:8m  

31 tháng 1 2021

Câu 1: 

Gọi x là chiều dài mảnh đất (0<x<14; x>y)

Gọi y là chiều rộng mảnh vườn (0<y<14)

Vì chu vi mảnh đất bằng 20m nên ta có PT: x+y=14 (1)

Vì đường chéo mảnh đất bằng 10m nên ta có PT:

x2+y2=100 (2)

Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=14\\x^2+y^2=100\end{matrix}\right.\)(HPT dễ rồi bạn tự giải nha)

\(\left\{{}\begin{matrix}y=8\\y=6\end{matrix}\right.\)(TM)

Vậy ta có 2 tập nghiệm (x;y) là (6;8) và (8;6)

-Độ dài 2 cạnh mảnh đất lần lượt là: 6cm và 8cm

Câu 1: 

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: a>0; b>0 và \(a\ge b\))

Vì chu vi mảnh đất là 28m nên ta có phương trình:

2(a+b)=28

hay a+b=14(1)

Vì đường chéo hình chữ nhật là 10m nên Áp dụng định lí Pytago, ta được:

\(a^2+b^2=100\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a+b=14\\a^2+b^2=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(14-b\right)^2+b^2=100\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-28b+196+b^2-100=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\2b^2-28b+96=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-14b+48=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(b-6\right)\left(b-8\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=14-8=6\\b=14-6=8\end{matrix}\right.\\\left[{}\begin{matrix}b=6\\b=8\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=6\end{matrix}\right.\)(thỏa ĐK)

Vậy: Độ dài hai cạnh của mảnh đất hình chữ nhật lần lượt là 8m và 6m

22 tháng 9

Gọi:

  • \(x\) là chiều dài ban đầu (m)
  • \(y\) là chiều rộng ban đầu (m)

Theo đề bài:

  1. Chu vi hình chữ nhật là 64m, tức:

\(2 \left(\right. x + y \left.\right) = 64 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x + y = 32\)

  1. Khi tăng chiều dài thêm 2m và chiều rộng thêm 3m, diện tích tăng thêm 88 m². Diện tích ban đầu là \(x y\), diện tích sau tăng là \(\left(\right. x + 2 \left.\right) \left(\right. y + 3 \left.\right)\). Do đó:

\(\left(\right. x + 2 \left.\right) \left(\right. y + 3 \left.\right) - x y = 88\)

Mở rộng và đơn giản:

\(x y + 3 x + 2 y + 6 - x y = 88\)\(3 x + 2 y + 6 = 88\)\(3 x + 2 y = 82\)


Hệ phương trình:

\(\left{\right. x + y = 32 \\ 3 x + 2 y = 82\)


Giải hệ:

Từ phương trình thứ nhất:

\(y = 32 - x\)

Thay vào phương trình thứ hai:

\(3 x + 2 \left(\right. 32 - x \left.\right) = 82\)\(3 x + 64 - 2 x = 82\)\(x + 64 = 82\)\(x = 18\)

Thay \(x = 18\) vào:

\(y = 32 - 18 = 14\)


Kết luận:

Chiều dài mảnh vườn là \(\boxed{18 \&\text{nbsp};\text{m}}\), chiều rộng là \(\boxed{14 \&\text{nbsp};\text{m}}\).
Tk

Nửa chu vi mảnh vườn là 64:2=32(m)

Gọi chiều dài và chiều rộng của mảnh vườn lần lượt là x(m) và y(m)

(Điều kiện: x>y>0)

Nửa chu vi mảnh vườn là 32m nên x+y=32(1)

Nếu tăng chiều dài thêm 2m và tăng chiều rộng thêm 3m thì diện tích tăng thêm \(88m^2\)

nên ta có: (x+2)(y+3)=xy+88

=>xy+3x+2y+6=xy+88

=>3x+2y=82(2)

Từ (1),(2) ta có hệ phương trình:

\(\begin{cases}x+y=32\\ 3x+2y=82\end{cases}\Rightarrow\begin{cases}3x+3y=96\\ 3x+2y=82\end{cases}\)

=>\(\begin{cases}3x+3y-3x-2y=96-82\\ x+y=32\end{cases}\Rightarrow\begin{cases}y=14\\ x=32-14=18\end{cases}\) (nhận)

Vậy: chiều dài và chiều rộng của mảnh vườn lần lượt là 18(m) và 14(m)

14 tháng 6 2020

Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là a, b ( m ) ( \(0< a,b< 110\) )

Theo bài, ta có hệ phương trình: \(\hept{\begin{cases}a-b=17\\ab=110\end{cases}}\)

Đặt \(c=-b\)\(\Rightarrow\hept{\begin{cases}a+c=17\\a.c=-110\end{cases}}\)

\(\Rightarrow\)a và c là nghiệm của của phương trình: \(x^2-17x-110=0\)

\(\Delta=\left(-17\right)^2-4.1.\left(-110\right)=729\)

\(\Rightarrow\sqrt{\Delta}=\sqrt{729}=27\)

\(\Rightarrow x_1=\frac{-\left(-17\right)+27}{2}=\frac{17+27}{2}=\frac{44}{2}=22\)

\(x_2=\frac{-\left(-17\right)-27}{2}=\frac{17-27}{2}=\frac{-10}{2}=-5\)

\(\Rightarrow a=x_1=22\)\(c=x_2=-5\)

mà \(-b=c\)\(\Rightarrow b=-c=-\left(-5\right)=5\)

Vậy chiều dài là 22m, chiều rộng là 5m

14 tháng 6 2020

yes minh ngĩ thế .

22 tháng 4 2021

undefined