Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: (x-2)(x+3)>0
TH1: \(\begin{cases}x-2>0\\ x+3>0\end{cases}\Rightarrow\begin{cases}x>2\\ x>-3\end{cases}\Rightarrow x>2\)
TH2: \(\begin{cases}x-2<0\\ x+3<0\end{cases}\Rightarrow\begin{cases}x<2\\ x<-3\end{cases}\)
=>x<-3
b: (2x-1)(-x+1)>0
=>(2x-1)(x-1)<0
TH1: \(\begin{cases}2x-1>0\\ x-1<0\end{cases}\Longrightarrow\begin{cases}x>\frac12\\ x<1\end{cases}\)
=>\(\frac12
TH2: \(\begin{cases}2x-1<0\\ x-1>0\end{cases}\Rightarrow\begin{cases}x<\frac12\\ x>1\end{cases}\)
=>x∈∅
c: (x+1)(3x-6)<0
=>3(x+1)(x-2)<0
=>(x+1)(x-2)<0
TH1: \(\begin{cases}x+1>0\\ x-2<0\end{cases}\Rightarrow\begin{cases}x>-1\\ x<2\end{cases}\Rightarrow-1
TH2: \(\begin{cases}x+1<0\\ x-2>0\end{cases}\Rightarrow\begin{cases}x<-1\\ x>2\end{cases}\)
=>x∈∅

\(a.\frac14-\frac56+\frac{7}{12}\)
\(=\frac{3}{12}-\frac{10}{12}+\frac{7}{12}\)
\(=\frac{0}{12}=0\)
\(b.6\frac27\cdot\frac15-1\frac27\cdot\frac15+\frac45\)
\(=\frac{44}{7}\cdot\frac15-\frac97\cdot\frac15+\frac45\)
\(=\frac15\cdot\left(\frac{44}{7}-\frac97\right)+\frac45\)
\(=\frac15\cdot\frac{35}{7}+\frac45\)
\(=\frac15\cdot5+\frac45\)
\(=1+\frac45=\frac95\)

Giải :
Hình vẽ ; giả thiết, kết luận đã được đầu bài cho sẵn.
Chứng minh :
Xét \(\Delta AMC\text{ và }\Delta BMD\), có :
\(MA=MB\text{ (gt)}\)
\(\angle AMC=\angle DMB\text{ (đối đỉnh)}\)
\(DM=CM\text{ (gt)}\)
\(\Rightarrow\Delta AMC=\Delta BMD\text{ (c.g.c)}\)
b/ Ta có : \(\bigtriangleup AMC=\bigtriangleup BMD\text{ (c.m.t)}\)
\(\Rightarrow\widehat{DBM}=\widehat{ACM}\text{ (2 góc tương ứng ở vị trí so le trong)}\) (1)
\(\Rightarrow BD//AC\)
Xét \(\bigtriangleup DMA\text{ và }\bigtriangleup BMC,\text{ có :}\)
\(\widehat{DMA}=\widehat{BMC}\text{ (đối đỉnh)}\)
\(DM=CM\left(gt\right)\)
\(BM=AM\left(gt\right)\)
\(\Rightarrow\bigtriangleup DMA=\bigtriangleup BMC\left(c.g.c\right)\)
\(\Rightarrow\widehat{ADM}=\widehat{DCM}\text{ (2 góc tương ứng ở vị trí so le trong)}\) (2)
\(\text{Từ (1) và (2) suy ra tứ giác ABCD là hình bình hành}\) (3)
\(\angle ACB=90^{\text{o}}\) (4)
\(\text{T}ừ\text{ (3) và (4) suy ra hình bình hành ABCD là hình chữ nhật}\) (đpcm)

Admin thật thường có nhãn Admin kèm theo sau tên bạn nhé, bạn lưu ý để tránh kẻ xấu lợi dụng.
Cô chào em, những người làm việc cho Olm thì đều phải có gắn chức danh kèm theo, em nhé. Nếu tên hiển thị mà không kèm theo chức danh thì tất cả những tài khoản đó đều giả mạo.

câu này mình vừa làm ở bạn Khang Phạm Duy , HÂN nhé
tham khảo .mình giải rất chi tiết

a) 1cm + 2cm = 3cm < 4cm
⇒ bộ ba đoạn thẳng 1cm, 2cm, 4cm không thể tạo thành 1 tam giác.
b) 2cm + 3cm = 5cm.
⇒ Bộ ba đoạn thẳng 2cm; 3cm; 5cm không lập thành tam giác.
c) Ta có 3cm + 4cm = 7cm > 5cm.
Do đó bộ đoạn thẳng 3cm, 4cm, 5cm có thể thành 3 cạnh của tam giác.
Cách dựng tam giác có ba độ dài 3cm, 4cm, 5cm :
- Vẽ BC = 4cm
- Dựng đường tròn tâm B bán kính 2cm ; đường tròn tâm C bán kính 3cm. Hai đường tròn cắt nhau tại A. Nối AB, AC ta được tam giác cần dựng.
Để tính chiều cao của mực nước khi ta đậy lại và lật đứng bình thủy tinh, ta cần áp dụng công thức tỷ lệ giữa thể tích và chiều cao của hình lăng trụ ban đầu và sau khi đậy lại.
Thể tích hình lăng trụ ban đầu là SABC x CC' = (1/2 x AB x AC) x CC' = (1/2 x 6 x 8) x 12 = 288 cm³.
Theo đề bài, mực nước trong bình hiện tại bằng 2/3 chiều cao của hình lăng trụ, nên chiều cao của mực nước hiện tại là (2/3) x 12 = 8 cm.
Khi ta đậy lại và lật đứng bình, thể tích mực nước không thay đổi. Vì vậy, thể tích mực nước sau khi đậy lại cũng là 288 cm³.
Để tính chiều cao của mực nước sau khi đậy lại, ta thay vào công thức tỷ lệ thể tích và chiều cao:
Thể tích mực nước sau khi đậy lại = SACC'A' x chiều cao mới = (1/2 x AB x AC) x chiều cao mới.
288 = (1/2 x 6 x 8) x chiều cao mới.
288 = 24 x chiều cao mới.
Chiều cao mới = 288 / 24 = 12 cm.
Vậy, chiều cao của mực nước sau khi đậy lại và lật đứng bình là 12 cm.