K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 9

Đặt \(A=1+\frac12+\frac{1}{2^2}+\cdots+\frac{1}{2^{2023}}+\frac{1}{2^{2024}}\)

\(2A=2+1+\frac12+\frac{1}{2^2}+\cdots+\frac{1}{2^{2022}}+\frac{1}{2^{2023}}\)

\(2A-A=2-\frac{1}{2^{2024}}\)

\(A=2-\frac{1}{2^{2024}}\)

Thay vào pt ban đầu:

\(\left(x+\frac12\right)^{2024}=2-\left(2-\frac{1}{2^{2024}}\right)\)

\(\left(x+\frac12\right)^{2024}=\frac{1}{2^{2024}}=\left(\frac12\right)^{2024}\)

\(x+\frac12=\frac12\) hoặc \(x+\frac12=-\frac12\)

\(x=0\) hoặc \(x=-1\)

a: (x+2)(2x-1)+(x-1)(3-2x)=3

=>\(2x^2-x+4x-2+3x-2x^2-3+2x=3\)

=>8x-5=3

=>8x=8

=>x=1

b: \(\left(2x-1\right)\left(2x+1\right)-\left(x+2\right)\left(4x-1\right)=15\)

=>\(4x^2-1-\left(4x^2-x+8x-2\right)=15\)

=>\(4x^2-1-\left(4x^2+7x-2\right)=15\)

=>\(4x^2-1-4x^2-7x+2=15\)

=>-7x+1=15

=>-7x=14

=>x=-2

Bài 6: Số học sinh giỏi là \(48\cdot\frac16=8\) (bạn)

Số học sinh trung bình là \(48\cdot25\%=12\) (bạn)

Số học sinh khá là 48-8-12=40-12=28(bạn)

Bài 5:

Thể tích xăng còn lại chiếm:

\(100\%-\frac{3}{10}-40\%=60\%-30\%=30\%\) (tổng số xăng)

Thể tích xăng còn lại là:

\(60\cdot30\%=18\left(lít\right)\)

7 tháng 9

Bài 7.

Số học sinh lớp 6A là:

120 x 35 : 100 = 42 (học sinh)

Số học sinh lớp 6C là:

120 x 3/10 = 36 (học sinh)

Số học sinh lớp 6B là:

120 - 42 - 36 = 42 (học sinh)

Đáp số: 42 học sinh

Bài 8.

Số học sinh trung bình là:

1200 x 5/8 = 750 (học sinh)

Số học sinh khá là:

1200 x 1/3 = 400 (học sinh)

Số học sinh giỏi là:

1200 - 750 - 400 = 50 (học sinh)

Đáp số: 50 học sinh

Bài 9.

a) Số học sinh giỏi là:

40 x 1/5 = 8 (học sinh)

Số học sinh trung bình là:

40 x 3/8 = 15 (học sinh)

Số học sinh khá là:

40 - 8 - 15 = 17 (học sinh)

b) Tỉ số phần trăm số học sinh Khá so với cả lớp là:

17 : 40 x 100 = 42,5%

Đáp số: ...

10 tháng 9

Kết luận của định lý ứng với hình vẽ là:

\(\hat{tOz}\) = 90\(^0\)

Kết luận của định lí ứng với hình vẽ sẽ là Ot⊥Oz

Bài 2:

a: \(A=\frac17+\frac{1}{7^2}+\cdots+\frac{1}{7^{100}}\)

=>\(7A=1+\frac17+\cdots+\frac{1}{7^{99}}\)

=>\(7A-A=1+\frac17+\cdots+\frac{1}{7^{99}}-\frac17-\frac{1}{7^2}-\cdots-\frac{1}{7^{100}}\)

=>\(6A=1-\frac{1}{7^{100}}=\frac{7^{100}-1}{7^{100}}\)

=>\(A=\frac{7^{100}-1}{6\cdot7^{100}}\)

b: \(B=\frac53+\frac{5}{3^2}+\frac{5}{3^3}+\cdots+\frac{5}{3^{20}}\)

=>\(3B=5+\frac53+\frac{5}{3^2}+\cdots+\frac{5}{3^{19}}\)

=>\(3B-B=5+\frac53+\frac{5}{3^2}+\cdots+\frac{5}{3^{19}}-\frac53-\frac{5}{3^2}-\cdots-\frac{5}{3^{20}}\)

=>\(2B=5-\frac{5}{3^{20}}=\frac{5\cdot3^{20}-5}{3^{20}}\)

=>\(B=\frac{5\cdot3^{20}-5}{2\cdot3^{20}}\)

c: \(C=-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\cdots+\frac{1}{3^{50}}\)

=>\(3C=-1+\frac13-\frac{1}{3^2}+\frac{1}{3^3}-\cdots+\frac{1}{3^{49}}\)

=>\(3C+C=-1+\frac13-\frac{1}{3^2}+\frac{1}{3^3}-\cdots+\frac{1}{3^{49}}-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\cdots+\frac{1}{3^{50}}\)

=>\(4C=-1+\frac{1}{3^{50}}=\frac{-3^{50}+1}{3^{50}}\)

=>\(C=\frac{-3^{50}+1}{4\cdot3^{50}}\)

d: \(D=\left(-\frac17\right)^0+\left(-\frac17\right)^1+\left(-\frac17\right)^2+\cdots+\left(-\frac17\right)^{2017}\)

=>\(D=1-\frac17+\frac{1}{7^2}-\frac{1}{7^3}+\cdots-\frac{1}{7^{2017}}\)

=>\(7D=7-1+\frac17-\frac{1}{7^2}+\cdots-\frac{1}{7^{2016}}\)

=>\(7D+D=7-1+\frac17-\frac{1}{7^2}+\cdots-\frac{1}{7^{2016}}+1-\frac17+\frac{1}{7^2}-\frac{1}{7^3}+\cdots-\frac{1}{7^{2017}}\)

=>\(8D=7-\frac{1}{7^{2017}}=\frac{7^{2018}-1}{7^{2017}}\)

=>\(D=\frac{7^{2018}-1}{8\cdot7^{2017}}\)

e: \(E=\frac12+\frac{1}{2^3}+\frac{1}{2^5}+\cdots+\frac{1}{2^{99}}\)

=>\(4E=2+\frac12+\frac{1}{2^3}+\cdots+\frac{1}{2^{97}}\)

=>\(4E-E=2+\frac12+\frac{1}{2^3}+\cdots+\frac{1}{2^{97}}-\frac12-\frac{1}{2^3}-\frac{1}{2^5}-\cdots-\frac{1}{2^{99}}\)

=>\(3E=2-\frac{1}{2^{99}}=\frac{2^{100}-1}{2^{99}}\)

=>\(E=\frac{2^{100}-1}{3\cdot2^{99}}\)

Bài 1:

a: \(A=2\cdot4+4\cdot6+6\cdot8+\cdots+98\cdot100\)

\(=4\left(1\cdot2+2\cdot3+3\cdot4+\cdots+49\cdot50\right)\)

\(=4\left\lbrack1\left(1+1\right)+2\left(2+1\right)+3\left(3+1\right)+\cdots+49\left(49+1\right)\right\rbrack\)

\(=4\left\lbrack\left(1^2+2^2+\cdots+49^2\right)+\left(1+2+3+\cdots+49\right)\right\rbrack\)

\(=4\cdot\left\lbrack\frac{49\left(49+1\right)\left(2\cdot49+1\right)}{6}+\frac{49\cdot50}{2}\right\rbrack=4\cdot\left\lbrack\frac{49\cdot50\cdot99}{6}+49\cdot25\right\rbrack\)

\(=4\cdot\left\lbrack49\cdot25\cdot33+49\cdot25\right\rbrack=4\cdot49\cdot25\cdot34=100\cdot49\cdot34\)

=166600

b: \(B=1\cdot99+2\cdot98+\cdots+97\cdot3+98\cdot2+99\cdot1\)

\(=2\cdot\left(1\cdot99+2\cdot98+\cdots+48\cdot52+49\cdot51\right)+50^2\)

\(=2\cdot\left\lbrack1\left(100-1\right)+2\left(100-2\right)+\cdots+48\left(100-48\right)+49\left(100-49\right)\right\rbrack+50^2\)

\(=2\left\lbrack100\left(1+2+\cdots+49\right)-\left(1^2+2^2+\cdots+49^2\right)\right\rbrack\) +2500

\(=2\cdot\left\lbrack100\cdot\frac{49\cdot50}{2}-\frac{49\cdot\left(49+1\right)\left(2\cdot49+1\right)}{6}\right\rbrack+2500\)

\(=2\cdot\left\lbrack100\cdot49\cdot25-\frac{49\cdot50\cdot99}{6}\right\rbrack+2500\)

\(=2\cdot\left\lbrack100\cdot49\cdot25-49\cdot25\cdot33\right\rbrack+2500=2\cdot25\cdot49\left(100-33\right)+2500\)

\(=50\cdot49\cdot67+2500=166650\)

d: \(D=2^2+4^2+\cdots+98^2+100^2\)

\(=2^2\left(1^2+2^2+\cdots+49^2+50^2\right)\)

\(=4\cdot\frac{50\cdot\left(50+1\right)\left(2\cdot50+1\right)}{6}=4\cdot\frac{50\cdot51\cdot101}{6}\)

\(=4\cdot25\cdot17\cdot101=100\cdot17\cdot101=171700\)

e: \(E=1^2+3^2+5^2+\cdots+99^2\)
\(=\left(1^2+2^2+3^2+4^2+\cdots+99^2+100^2\right)-\left(2^2+4^2+\cdots+100^2\right)\)

\(=\frac{100\left(100+1\right)\left(2\cdot100+1\right)}{6}-2^2\left(1^2+2^2+\cdots+50^2\right)\)

\(=\frac{100\cdot101\cdot201}{6}-4\cdot\frac{50\left(50+1\right)\left(2\cdot50+1\right)}{6}\)

\(=50\cdot101\cdot67-4\cdot\frac{50\cdot51\cdot101}{6}\)

\(=50\cdot101\cdot67-4\cdot25\cdot17\cdot101=101\cdot50\left(67-2\cdot17\right)\)

\(=50\cdot101\cdot33=166650\)

f: \(F=1^2-2^2+3^2-4^2+\cdots+99^2-100^2\)

\(=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+\cdots+\left(99-100\right)\left(99+100\right)\)

=-(1+2+3+4+...+99+100)

\(=-100\cdot\frac{101}{2}=-50\cdot101=-5050\)

a:Vẽ lại hình:

ta có: a⊥x

b⊥x

Do đó: a//b

b: Ta có: a//b

=>\(\hat{A_1}+\hat{B_4}=180^0\) (hai góc trong cùng phía)

=>\(\hat{B_4}=180^0-70^0=110^0\)

ta có: \(\hat{B_4}=\hat{B_2}\) (hai góc đối đỉnh)

\(\hat{B_4}=110^0\)

nên \(\hat{B_2}=110^0\)