
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có:\(\left(a-b+c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
\(=2\left(a-b+c\right)^2-2\left(b-c\right)^2\\ =2\left(\left(a-b+c\right)^2-\left(b-c\right)^2\right)\)
\(=2\left(a-b+c-b+c\right)\left(a-b+c+b-c\right)\\ =2\left(a-2b+2c\right)a \)
\(=2a^2-4ab+4ac\)

\(A=\left(\dfrac{2-x}{2+x}-\dfrac{16}{4-x^2}-\dfrac{2+x}{2-x}\right)\)
\(\Rightarrow A=\left(\dfrac{\left(2-x\right)^2}{\left(2+x\right)\left(2-x\right)}-\dfrac{16}{\left(2+x\right)\left(2-x\right)}-\dfrac{\left(2+x\right)^2}{\left(2+x\right)\left(2-x\right)}\right)\)\(\Rightarrow A=\left(\dfrac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}-\dfrac{16}{\left(2+x\right)\left(2-x\right)}-\dfrac{4+4x+x^2}{\left(2+x\right)\left(2-x\right)}\right)\)
\(\Rightarrow A=\dfrac{4-4x+x^2-16-4-4x-x^2}{\left(2+x\right)\left(2-x\right)}\)
\(\Rightarrow A=\dfrac{-8x-16}{\left(2+x\right)\left(2-x\right)}\)
\(\Rightarrow A=\dfrac{-8\left(x+2\right)}{\left(2+x\right)\left(2-x\right)}\)
\(\Rightarrow A=\dfrac{-8}{2-x}\)
\(\Rightarrow A=\dfrac{8}{x-2}\)


\((x+y)^3-(x-y)^3\)
\(=x^3+3x^2y+3xy^2+y^3-(x^3-3x^2y+3xy^2-y^3)\)
\(=6x^2y+2y^3\)
Cách khác:
Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(3x^2+y^2\right)\)
\(=6x^2y+2y^3\)

\(A=\left(x-y\right)^2-2\left(x^2-xy-y^2\right)=x^2-2xy+y^2-2x^2+2xy+2y^2\)
\(=-x^2+3y^2\)

\(\left(x+y\right)^3-\left(x^3+y^3\right)\)
\(=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)
\(=3xy\left(x+y\right)\)

a: \(P=\dfrac{8+5x-2x-8}{x\left(x+4\right)}=\dfrac{3x}{x\left(x+4\right)}=\dfrac{3}{x+4}\)
b: Khi x=1/2 thì P=3/(1/2+4)=3:9/2=3*2/9=6/9=2/3

a: ĐKXĐ: x∉{1;-1;2}
\(P=\left(\frac{x}{x+1}-\frac{1}{1-x}+\frac{1}{1-x^2}\right):\frac{x-2}{x^2-1}\)
\(=\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{1}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{\left(x-1\right)\left(x+1\right)}{x-2}\)
\(=\frac{x\left(x-1\right)+x+1-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(x-1\right)\left(x+1\right)}{x-2}\)
\(=\frac{x^2-x+x}{x-2}=\frac{x^2}{x-2}\)
b: Để P nguyên thì \(x^2\) ⋮x-2
=>\(x^2-4+4\) ⋮x-2
=>4⋮x-2
=>x-2∈{1;-1;2;-2;4;-4}
=>x∈{3;1;4;0;6;-2}
Kết hợp ĐKXĐ, ta được: x∈{3;4;0;6;-2}
c: \(P=\frac{x^2}{x-2}\)
\(=\frac{x^2-4+4}{x-2}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\ge2\cdot\sqrt{\left(x-2\right)\cdot\frac{4}{x-2}}+4\)
=>P>=2*2+4=8
Dấu '=' xảy ra khi \(\left(x-2\right)^2=4\)
=>x-2=2
=>x=4(nhận)
\(B=9x^4-\left(2x+1\right)^2-\left(9x^4+6x^2+1\right)\\ =9x^4-4x^2-4x-1-9x^4-6x^2-1\\ =-10x^2-4x-2\)
sai r \(\left(3x^2-2x+1\right)\left(3x^2+2x+1\right)=\left[3x^2-\left(2x-1\right)\right]\left[3x^2+\left(2x+1\right)\right]\)
mà