
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}=5}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)+2.2\sqrt{x-1}+2^2}+\sqrt{\left(x-1\right)+2.3\sqrt{x-1}+9}=5\)\(\Leftrightarrow\left(x-1+2\right)+\left(x-1+3\right)=5\)
\(\Leftrightarrow2x+3=5\Rightarrow x=1\)
sau bạn dùng chức năng viết cho dễ hiểu ạ

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\hat{EAB}\) chung
Do đó: ΔAEB~ΔAFC
=>\(\frac{AE}{AF}=\frac{AB}{AC}\)
=>\(\frac{AE}{AB}=\frac{AF}{AC}\)
=>\(AE\cdot AC=AF\cdot AB\)
b: Xét ΔAEF và ΔABC có
\(\frac{AE}{AB}=\frac{AF}{AC}\)
góc EAF chung
Do đó: ΔAEF~ΔABC
=>\(\hat{AEF}=\hat{ABC}\)
c: Ta có: ΔBEM vuông tại E
mà EI là đường trung tuyến
nên IE=IB
=>ΔIBE cân tại I
=>\(\hat{IEB}=\hat{IBE}\)
mà \(\hat{FEB}=\hat{IBE}\) (hai góc so le trong, FE//BM)
nên \(\hat{FEB}=\hat{IEB}\)
=>EB là phân giác của góc FED
Gọi K là giao điểm của AH và BC
Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
=>AH⊥BC tại K
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\hat{FHB}=\hat{EHC}\) (hai góc đối đỉnh)
Do đó: ΔHFB~ΔHEC
=>\(\frac{HF}{HE}=\frac{HB}{HC}\)
=>\(\frac{HF}{HB}=\frac{HE}{HC}\)
Xét ΔHFE và ΔHBC có
\(\frac{HF}{HB}=\frac{HE}{HC}\)
góc FHE=góc BHC
Do đó: ΔHFE~ΔHBC
=>\(\hat{HEF}=\hat{HCB}\)
mà \(\hat{HCB}=\hat{BAK}\left(=90^0-\hat{ABC}\right)\)
nên \(\hat{HEF}=\hat{BAK}\) (1)
Xét ΔHEA vuông tại E và ΔHKB vuông tại K có
\(\hat{EHA}=\hat{KHB}\) (hai góc đối đỉnh)
Do đó: ΔHEA~ΔHKB
=>\(\frac{HE}{HK}=\frac{HA}{HB}\)
=>\(\frac{HE}{HA}=\frac{HK}{HB}\)
Xét ΔHEK và ΔHAB có
\(\frac{HE}{HA}=\frac{HK}{HB}\)
góc EHK=góc AHB
Do đó: ΔHEK~ΔHAB
=>\(\hat{HEK}=\hat{HAB}=\hat{BAK}\left(2\right)\)
TỪ (1),(2) suy ra \(\hat{HEK}=\hat{HEF}\)
=>EB là phân giác của góc FEK
mà EB là phân giác của góc FED
và EK và ED có điểm chung là E; D và K đều nằm trên cạnh BC
nên K trùng với D
=>A,H,D thẳng hàng

Vì \(0\le a,b,c\le1\)nên ta có \(1-a>0,1-b>0,1-c>0\)\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\Leftrightarrow1-\left(a+b+c\right)+\left(ab+ac+bc\right)-abc\ge0\)
\(\Leftrightarrow1\ge a+b+c-\left(ac+bc+ab\right)+abc\left(1\right)\)
Mặt khác vì \(0\le a,b,c\le1\Rightarrow b\ge b^2;c\ge c^3;abc\ge0\left(2\right)\)
Từ 1,2 có : \(a+b^2+c^3-\left(ab+ac+bc\right)\le1\)
dấu \(\left(a,b,c\right)\)là hoán vị của \(\left(0,1,1\right)\)

đây Câu hỏi của Thanh Tâm - Toán lớp 9 - Học toán với OnlineMath

b) x2 +3x+1= (x+3)√(x2 +1)
\(\Leftrightarrow x\left(x+3\right)-\left(x+3\right)\sqrt{x^2+1}=-1\)
\(\Leftrightarrow\left(x+3\right)\left(x-\sqrt{x^2+1}\right)=-1\)
\(\Leftrightarrow\left(x+3\right)\frac{x^2-\left(x^2+1\right)}{x+\sqrt{x^2+1}}=-1\)(do \(x+\sqrt{x^2+1}\ne0\))
\(\Leftrightarrow\left(x+3\right)\frac{-1}{x+\sqrt{x^2+1}}=-1\)
\(\Leftrightarrow\frac{x+3}{x+\sqrt{x^2+1}}=1\)
\(\Leftrightarrow x+3=x+\sqrt{x^2+1}\)
\(\Leftrightarrow3=\sqrt{x^2+1}\)
\(\Leftrightarrow9=x^2+1\)
\(\Leftrightarrow8=x^2\)
\(\Leftrightarrow x=\pm2\sqrt{2}\).Vậy...
c)Giải phương trình sau:căn( 2059 -x ) + căn(2035 - x ) + căn( 2154 - x ) = 24- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!
