Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Exer 1:
Solution:
Suppose that, the unknown number is: \(\overline{x215}\) (where x \(\in\) N).
When we clean three digits then the smaller number is \(\overline{x}\).
We have: \(\overline{x215}\) + \(\overline{x}\) = 78293
\(\Rightarrow\) 1000. \(\overline{x}\) + 215 + \(\overline{x}\) = 78293
1001. \(\overline{x}\) = 78078
x = 78
Thus, we found two natural number: 78215 and 78.
Exer 2:
Solution:
We have: x + 2y \(⋮\) 5
\(\Rightarrow\) 2x + 4y \(⋮\) 5
(2x + 4y) + (3x - 4y) = 5x \(⋮\) 5
\(\Rightarrow\) 2x + 4y \(⋮\) 5
Deduce 3x - 4y \(⋮\) 5.
Exer 3:
Solution:
We have: 2x + 5y \(⋮\) 7
4x + 10y \(⋮\) 7
(4x + 10y) - (4x + 3y) = 7y \(⋮\) 7
\(\Rightarrow\) 4x + 10y \(⋮\) 7
Deduce 4x + 3y \(⋮\) 7.

Lời giải:
Đặt \(\left(\frac{xy}{z}; \frac{yz}{x}; \frac{xz}{y}\right)=(a,b,c)\)
\(\Rightarrow \left\{\begin{matrix} y^2=ab\\ x^2=ac\\ z^2=bc\end{matrix}\right.\)
Bài toán trở thành: Cho $a,b,c>0$ thỏa mãn \(ab+bc+ac=1\)
Tìm min $S=a+b+c$
Theo hệ quả quen thuộc của BĐT Cauchy: \((a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Rightarrow S=\sqrt{(a+b+c)^2}\geq \sqrt{3(ab+bc+ac)}=\sqrt{3}\)
Vậy \(S_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
Lời giải:
Đặt \(\left(\frac{xy}{z}; \frac{yz}{x}; \frac{xz}{y}\right)=(a,b,c)\)
\(\Rightarrow \left\{\begin{matrix} y^2=ab\\ x^2=ac\\ z^2=bc\end{matrix}\right.\)
Bài toán trở thành: Cho $a,b,c>0$ thỏa mãn \(ab+bc+ac=1\)
Tìm min $S=a+b+c$
Theo hệ quả quen thuộc của BĐT Cauchy: \((a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Rightarrow S=\sqrt{(a+b+c)^2}\geq \sqrt{3(ab+bc+ac)}=\sqrt{3}\)
Vậy \(S_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
Vũ Ngọc Mai KO phù hợp cái đầu con mẹ mày
đọc đề không hiểu gì ._.