
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Bài 2:
\(\widehat{xAy}=\widehat{x'Ay'}=47^0\)(hai góc đối đỉnh)
\(\widehat{xAy'}=180^0-\widehat{xAy}=133^0\)(hai góc kề bù)
=>\(\widehat{x'Ay}=133^0\)(hai góc đối đỉnh)

Đề sửa lại là: Chứng minh \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\) nhé.
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}.\)
Xét 2 trường hợp:
TH1: \(a+b+c=0\) thì \(\left\{{}\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)
Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\), không phụ thuộc vào các giá trị \(a;b;c\) (1)
TH2: \(a+b+c\ne0\) thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}.\)
\(\Rightarrow\left\{{}\begin{matrix}2a=b+c\\2b=a+c\\2c=a+b\end{matrix}\right.\)
Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\), không phụ thuộc vào các giá trị \(a;b;c\) (2)
Từ (1) và (2) => \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\) không phụ thuộc vào các giá trị của \(a;b;c.\)
Chúc bạn học tốt!

\(5^3+3^5=125+243=368\)
Thao mình thì cách nhanh nhất là BẤM MÁY TÍNH
a) \(\frac{11}{125}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)
M.n giup em vs mai em nop r

\(\frac{11}{125}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)
= \(\frac{11}{125}-\left(\frac{17}{18}-\frac{4}{9}\right)-\left(\frac{5}{7}-\frac{17}{14}\right)\)
= \(\frac{11}{125}-\left(\frac{17}{18}-\frac{8}{18}\right)-\left(\frac{10}{14}-\frac{17}{14}\right)\)
= \(\frac{11}{125}-\frac{1}{2}+\frac{1}{2}\)
= \(\frac{11}{125}\)
Olm chào em, với dạng này em chỉ cần làm lần lượt từng câu một, sau đó nhấn vào kiểm tra. Em cứ làm lần lượt như vậy cho đến khi hết câu của bài kiểm tra tức là em đã hoàn thành bài kiểm tra rồi em nhé. Cảm ơn em đã đồng hành cùng Olm. Chúc em học tập hiệu quả và vui vẻ cùng Olm.