K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2018

Giải bài 5 trang 67 Toán 8 Tập 1 | Giải bài tập Toán 8

+ Xác định các điểm A, B, C, D trong hệ trục tọa độ như trên hình vẽ.

+ Hai đường chéo của tứ giác là AC và BD.

+ Vị trí kho báu là giao điểm của AC và BD và là điểm E trên hình vẽ.

+ Nhìn trên hình vẽ thấy điểm E có tọa độ (5; 6)

Vậy vị trí tọa độ của kho báu là (5; 6)

21 tháng 4 2017

Các bước làm như sau:

- Xác định các điểm A, B, C, D trên hình vẽ với A(3 ; 2), B(2 ; 7), C(6 ; 8), D(8 ; 5).

- Vẽ tứ giác ABCD.

- Vẽ hai đường chéo AC và BD. Gọi K là giao điểm của hai đường chéo đó.

- Xác định tọa độ của điểm K: K(5 ; 6)

Vậy vị trí kho báu có tọa độ K(5 ; 6) trên hình vẽ.

21 tháng 4 2017

Bài giải:

Các bước làm như sau:

- Xác định các điểm A, B, C, D trên hình vẽ với A(3 ; 2), B(2 ; 7), C(6 ; 8), D(8 ; 5).

- Vẽ tứ giác ABCD.

- Vẽ hai đường chéo AC và BD. Gọi K là giao điểm của hai đường chéo đó.

- Xác định tọa độ của điểm K: K(5 ; 6)

Vậy vị trí kho báu có tọa độ K(5 ; 6) trên hình vẽ.

24 tháng 8 2017

Các bước làm như sau:

- Xác định các điểm A, B, C, D trên hình vẽ với A(3 ; 2), B(2 ; 7), C(6 ; 8), D(8 ; 5).

- Vẽ tứ giác ABCD.

- Vẽ hai đường chéo AC và BD. Gọi K là giao điểm của hai đường chéo đó.

- Xác định tọa độ của điểm K: K(5 ; 6)

Vậy vị trí kho báu có tọa độ K(5 ; 6) trên hình vẽ.  

Bài giải:

Các bước làm như sau:

- Xác định các điểm A, B, C, D trên hình vẽ với A(3 ; 2), B(2 ; 7), C(6 ; 8), D(8 ; 5).

- Vẽ tứ giác ABCD.

- Vẽ hai đường chéo AC và BD. Gọi K là giao điểm của hai đường chéo đó.

- Xác định tọa độ của điểm K: K(5 ; 6)

Vậy vị trí kho báu có tọa độ K(5 ; 6) trên hình vẽ.  



CHÚC BẠN HỌC TỐT !!!

8 tháng 10 2019

Bài 64 (trang 100 SGK Toán 8 Tập 1): Cho hình bình hành ABCD. Các tia phân giác của các góc A, B, C, D cắt nhau như trên hình 91. Chứng minh rằng EFGH là hình chữ nhật.

Giải bài 64 trang 100 Toán 8 Tập 1 | Giải bài tập Toán 8

 
8 tháng 10 2019

Theo giả thiết ABCD là hình bình hành nên ta có:

ˆDAB=ˆDCB,ˆADC=ˆABC         (1)

Theo định lí tổng các góc của một tứ giác ta có:

ˆDAB+ˆDCB+ˆADC+ˆABC=360o                (2)

Từ (1) và (2) ⇒ˆDAB+ˆABC=360o/2=180o

Vì AG là tia phân giác ˆDAB (giả thiết)

⇒⇒ ˆBAG=1/2ˆDAB (tính chất tia phân giác)

Vì BG là tia phân giác ˆABC (giả thiết)

⇒⇒  ˆABG=1/2ˆABC

Do đó: ˆBAG+ˆABG=1/2(ˆDAB+ˆABC)=1/2.1800=90o

Xét ΔAGB= có:

ˆBAG+ˆABG=90o   (3)

Áp dụng định lí tổng ba góc trong một tam giác vào tam giác AGBAGB ta có:

ˆBAG+ˆABG+ˆAGB=180o            (4)

Từ (3) và (4) ⇒ˆAGB=90o      

Chứng minh tương tự ta được: ˆDEC=ˆEHG=90o

Tứ giác EFGH có ba góc vuông nên là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)

kiến thức lớp 8 chưa hok nên ko hỉu!!

5654646457568

5 tháng 8 2021

a) Trong tam giác ADC, ta có:

E là trung điểm của AD (gt)

I là trung điểm của AC (gt)

Nên EI là đường trung bình của ∆ ABC

⇒ EI // CD (tính chất đường trung bình của tam giác)

Trong tam giác ABC ta có:

I là trung điểm của AC

F là trung điểm của BC

Nên IF là đường trung bình của ∆ ABC

⇒ IF // AB (tính chất đường trung bình của tam giác)

b) Câu b đou

5 tháng 8 2021

em nào địt với anh ko

13 tháng 9

Tứ giác \(A B C D\)\(\hat{A} - \hat{B} = 50^{\circ}\). Các tia phân giác của \(\hat{C} , \hat{D}\) cắt nhau tại \(I\). Tính \(\hat{A} , \hat{B}\).

  • Gọi \(\hat{A} = a , \textrm{ }\textrm{ } \hat{B} = b , \textrm{ }\textrm{ } \hat{C} = c , \textrm{ }\textrm{ } \hat{D} = d\).
  • Ta có: \(a - b = 50^{\circ}\).
  • Trong tứ giác: \(a + b + c + d = 360^{\circ}\).
  • \(I\) là giao điểm phân giác \(\hat{C} , \hat{D}\) nên:
    \(\hat{C I D} = \frac{1}{2} \left(\right. c + d \left.\right)\).
  • \(\hat{C I D} = 90^{\circ} \Rightarrow c + d = 180^{\circ}\).
  • Thay vào: \(a + b = 180^{\circ}\).
  • Giải hệ:

a+b=180∘
a−b=50∘​  
⇒a=115∘,b=65∘.\(\)

Đáp số: \(\hat{A} = 115^{\circ} , \textrm{ }\textrm{ } \hat{B} = 65^{\circ}\).
xin tick. cảm ơnnn