Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{1}{19}+\dfrac{2}{18}+...+\dfrac{19}{1}=\left(\dfrac{1}{19}+1\right)+\left(\dfrac{2}{18}+1\right)+...+1\)
\(=\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+\dfrac{20}{20}=20\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}\right)\)
Thế lại bài toán ta được
\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+...+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=\dfrac{20\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=20\)
Ta có
\(\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{19}{1}\\ =\dfrac{1}{19}+1+\dfrac{2}{18}+1+\dfrac{3}{17}+1+...+\dfrac{19}{1}+1-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+\dfrac{20}{17}+...+\dfrac{20}{1}-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+20-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+\dfrac{20}{17}+...+\dfrac{20}{2}+1+19-19\\ =\dfrac{20}{20}+\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}\\ =20\cdot\left(\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}\right)\)
Thế vào ta có:
\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\\ =\dfrac{20\cdot\left(\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}\right)}{\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}}\\ =20\)

Bài 2:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2016}{2017}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)
\(\Leftrightarrow\dfrac{1}{x+1}=1-\dfrac{2016}{2017}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)
\(\Leftrightarrow x+1=2017\Leftrightarrow x=2016\)
Vậy \(x=2016\)

\(=\dfrac{\left(\dfrac{1}{19}+1\right)+\left(\dfrac{2}{18}+1\right)+...+\left(\dfrac{18}{2}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}\)
\(=\dfrac{\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+\dfrac{20}{20}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=20\)

\(A=\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{20}\)
\(>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}=\dfrac{10}{20}=\dfrac{1}{2}\)
Vậy \(A>\dfrac{1}{2}\)

1.
a) \(\dfrac{5}{18}+\dfrac{4}{7}+\dfrac{13}{18}+\dfrac{3}{7}\)
\(=\left(\dfrac{5}{18}+\dfrac{13}{18}\right)+\left(\dfrac{4}{7}+\dfrac{3}{7}\right)\)
\(=1+1=2\)
b) \(\dfrac{4}{9}.\dfrac{5}{19}.\dfrac{9}{4}\)
\(=\left(\dfrac{4}{9}.\dfrac{9}{4}\right).\dfrac{5}{19}\)
\(=1.\dfrac{5}{19}=\dfrac{5}{19}\)
tik mik nha!!!
2) \(\dfrac{4}{9}.\dfrac{5}{19}.\dfrac{9}{4} =(\dfrac{4}{9}.\dfrac{9}{4}).\dfrac{5}{19} =1.\dfrac{5}{19} =\dfrac{5}{19}\)

7)\(\dfrac{-19}{34}\left(\dfrac{17}{19}+\dfrac{49}{18}\right)+\dfrac{49}{18}\left(\dfrac{19}{34}-\dfrac{18}{7}\right)\)
=\(\dfrac{-19}{34}.\dfrac{17}{19}+\dfrac{49}{18}.\dfrac{-19}{34}+\dfrac{49}{18}.\dfrac{19}{34}-\dfrac{18}{7}.\dfrac{49}{18}\)
=\(\dfrac{1}{2}+\left(\dfrac{49}{18}.\dfrac{-19}{34}+\dfrac{49}{18}.\dfrac{19}{34}\right)-7\)
=\(\dfrac{1}{2}+\left[\dfrac{49}{18}\left(\dfrac{-19}{34}+\dfrac{19}{34}\right)\right]-7\)
=\(\dfrac{1}{2}+0-7=\dfrac{-13}{2}\)
8)\(\dfrac{29}{32}\left(\dfrac{41}{36}-\dfrac{32}{58}\right)-\dfrac{41}{36}\left(\dfrac{29}{32}+\dfrac{18}{41}\right)\)
=\(\dfrac{29}{32}.\dfrac{41}{36}-\dfrac{29}{32}.\dfrac{32}{58}-\dfrac{41}{36}.\dfrac{29}{32}+\dfrac{18}{41}.\dfrac{41}{36}\)
=\(\left(\dfrac{29}{32}.\dfrac{41}{36}-\dfrac{41}{36}\dfrac{29}{32}\right)-\dfrac{29}{32}.\dfrac{32}{58}+\dfrac{18}{41}.\dfrac{41}{36}\)
=\(0-\dfrac{1}{2}+\dfrac{1}{2}=0\)

Ta có :
\(\dfrac{1}{11}>\dfrac{1}{20}\\ \dfrac{1}{12}>\dfrac{1}{20}\\ ..........\\ \dfrac{1}{20}=\dfrac{1}{20}\)
\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\\ \Rightarrow S>\dfrac{10}{20}\\ \Rightarrow S>\dfrac{1}{2}\)

\(\dfrac{1}{13}A=\dfrac{13^{19}+1}{13^{19}+\dfrac{1}{13}}=1+\dfrac{\dfrac{12}{13}}{13^{19}+\dfrac{1}{13}}\)
\(\dfrac{1}{13}B=\dfrac{13^{20}+1}{13^{20}+\dfrac{1}{13}}=1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\)
Vì \(\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}< \dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\Rightarrow1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}< 1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\)
\(\Rightarrow\dfrac{1}{13}A>\dfrac{1}{13}B\Rightarrow A>B\)
Vậy...
Ta xét hiệu:
\(A-1=\dfrac{3^{19}+1}{3^{18}+1}-1=\dfrac{3^{19}-3^{18}}{3^{18}+1}=\dfrac{3^{18}.2}{3^{18}+1}\)
\(B-1=\dfrac{3^{20}+1}{3^{19}+1}-1=\dfrac{3^{20}-3^{19}}{3^{19}+1}=\dfrac{3^{19}.2}{3^{19}+1}\)
Xét: \(\dfrac{A-1}{B-1}=\dfrac{3^{18}.2}{3^{18}+1}\cdot\dfrac{3^{19}+1}{3^{19}.2}=\dfrac{3^{19}+1}{\left(3^{18}+1\right).3}=\dfrac{3^{19}+1}{3^{19}+3}< 1\)
=> A-1<B-1
=>A<B