
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(x^2+\left(y-\dfrac{1}{10}\right)^{2018}=0\\ \Leftrightarrow x^2+\left[\left(y-\dfrac{1}{10}\right)^{1009}\right]^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\\left(y-\dfrac{1}{10}\right)^{1009}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

Các câu đúng: b,e
Các câu sai: a, c, d; f.
a) \(\left(-5\right)^2.\left(-5\right)^3=\left(-5\right)^5\);
c) \(\left(0,2\right)^{10}:\left(0,2\right)^5=\left(0,2\right)^{10-5}=0,2^5\);
d) \(\left[\left(-\dfrac{1}{7}\right)^2\right]^4=\left(-\dfrac{1}{7}\right)^{2.4}=\left(-\dfrac{1}{7}\right)^8\)
f \(\dfrac{8^{10}}{4^8}=\dfrac{\left(2^3\right)^5}{\left(2^2\right)^8}=\dfrac{2^{15}}{2^{16}}=\dfrac{1}{2}\)

3. \(\left(\frac{1}{2^5}\right)^{25}=\left(\frac{1^5}{2^5}\right)^{25}=\left[\left(\frac{1}{2}\right)^5\right]^{25}=\left(\frac{1}{2}\right)^{125}\)
\(\left(\frac{1}{3^{25}}\right)^5=\left(\frac{1^{25}}{3^{25}}\right)^5=\left[\left(\frac{1}{3}\right)^{25}\right]^5=\left(\frac{1}{3}\right)^{125}\)
Vì \(\frac{1}{2}>\frac{1}{3}\Rightarrow\left(\frac{1}{2^5}\right)^{25}>\left(\frac{1}{3^{25}}\right)^5\)
1. \(3^{800}=\left(3^8\right)^{100}=6561^{100}\)
\(5^{500}=\left(5^5\right)^{100}=3125^{100}\)
Vì \(6561>3125\Rightarrow3^{800}>5^{500}\)
2. \(\left(-2\right)^{3000}=\left[\left(-2\right)^3\right]^{1000}=\left(-8\right)^{1000}\)
\(\left(-3\right)^{2000}=\left[\left(-3\right)^2\right]^{1000}=9^{1000}\)
Vì \(-8< 9\Rightarrow\left(-2\right)^{3000}< \left(-3\right)^{2000}\)

3.
\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2018}=0\)
Ta luôn có: \(\left(2x-5\right)^{2018}\ge0\forall x;\left(3y+4\right)\ge0\forall y\)
Mà \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2018}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2018}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=\frac{-4}{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(\frac{5}{2};\frac{-4}{3}\right)\)

Bài 2:
Ta có: \(\frac{\left(3^3\right)^2.\left(2^3\right)^5}{\left(2.3\right)^6.\left(2^5\right)^3}\)\(=\frac{3^6.2^{15}}{2^6.3^6.2^{15}}\)\(\frac{1}{2^6}=\frac{1}{64}\)
Chúc hk tốt nha!!!

a: \(=-\dfrac{1}{15}x^6y\)
b: \(=\dfrac{4}{5}ab^5\cdot2x^3y\cdot\left(-y\right)=-\dfrac{8}{5}ab^5\cdot x^3y^2\)
c: \(=-16\cdot\dfrac{3}{4}v^3\cdot\dfrac{-2}{5}uv=\dfrac{24}{5}v^4u\)
d: \(=8\cdot\left(-64\right)\cdot5\cdot u^2v^2\cdot\left(-27\right)v^3=69120u^2v^5\)
e: \(=-10y\cdot8y^3z^3\cdot25z^2=-2000y^4z^5\)
\(5^{2} \cdot \left(\right. 16 \cdot 10 - 140 + 4^{4} + 1000 \left.\right)\)
\(=25\cdot\left(160-140+256+1000\right)\)
\(=25\cdot1276\)
\(=31900\)
\(5^2\cdot\left(16\cdot10-140+4^4+1000\right)\)
\(=25\cdot\left(160-140+256+1000\right)\)
\(=25\cdot1276\)
\(=31900\)