K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

Đáp án là C

Mỗi cách sắp xếp 6 quyển sách khác nhau vào một hàng ngang trên giá sách là một hoán vị của 6 phần tử. Vậy số cách sáp xếp là 6!

4 tháng 7 2019

ĐK: a khác 1/2

\(P=\frac{1}{2a-1}\sqrt{25a^4\left(1-4a+4a^2\right)}\)

\(=\frac{1}{2a-1}\sqrt{\left(5a^2\right)^2\left(2a-1\right)^2}=\frac{5a^2}{2a-1}\left|2a-1\right|\)

Với 2a-1>0  <=> a>1/2

\(P=5a^2\)

Với 2a-a<0 <=> a<1/2

\(P=-5a^2\)

9 tháng 10 2015

ta có \(y=\frac{3\left(x+1\right)}{x-2}=3+\frac{9}{x-2}\) để các điểm trên C có tọa độ nguyên thì (x,y) nguyên

suy ra (x-2) là ước của 9

mà \(Ư\left\{9\right\}=\left\{\pm9;\pm3;\pm1\right\}\)

TH1: x-2=-9 suy ra x=-7 suy ra y=3-1=2

th2: x-2=9 suy ra x=11 suy ra y=3+1=4

th3:x-2=-3 suy ra x=-2 suy ra y=3-3=0

th4: x-2=3 suy ra x=5 suy ra y=3+3=6

th5:x-2=1 suy ra x=3 suy ra y=3+9=12

th6: x-2=-1 suy ra x=1 suy ra y=3-9=-6

kết luận....

31 tháng 1 2016

Làm thế nào nhiều gấp ba số nguyên (a, b, c)   như vậy  a.b.c√ = 6

1 tháng 2 2016

\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\)

\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}<\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\)

Suy ra: điều cần chứng minh

1 tháng 2 2016

đặt 1/5^2+1/6^2+,,,+1/100^2=A

*chứng minh A<1/4

ta có: \(\frac{1}{5^2}=\frac{1}{5.5}<\frac{1}{4.5}\)

\(\frac{1}{6^2}=\frac{1}{6.6}<\frac{1}{5.6}\)

...

\(\frac{1}{100^2}=\frac{1}{100.100}<\frac{1}{99.100}\)

\(=>A<\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)    
\(=>A<\frac{1}{4}-\frac{1}{100}<\frac{1}{4}=>A<\frac{1}{4}\left(1\right)\)

*chứng minh A>1/6

ta có \(\frac{1}{5^2}=\frac{1}{5.5}>\frac{1}{5.6}\)

\(\frac{1}{6^2}=\frac{1}{6.6}>\frac{1}{6.7}\)

...

\(\frac{1}{100^2}=\frac{1}{100.100}>\frac{1}{100.101}\)

\(=>A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(=>A>\frac{1}{5}-\frac{1}{101}>\frac{1}{6}=>A>\frac{1}{6}\) (2)

từ (1) và (2)=>1/6<A<1/4 hay 1/6<1/5^2+...+1/100^2<1/4(đpcm)

tick nhé

4 tháng 2 2016

\(3+\frac{1}{4+\frac{1}{b+\frac{1}{6}}}=\frac{421}{130}\) \(\Rightarrow\frac{1}{4+\frac{1}{b+\frac{1}{6}}}=\frac{31}{130}\Rightarrow4+\frac{1}{b+\frac{1}{6}}=\frac{130}{31}\Rightarrow\frac{1}{b+\frac{1}{6}}=\frac{6}{31}\Rightarrow b+\frac{1}{6}=\frac{31}{6}\Rightarrow b=\frac{30}{6}=5\)

Vậy b = 5

3 tháng 2 2016

đề thiếu

12 tháng 11 2016

Toán lớp 7 mà vào đăng vào trang lớp 6 chi vậy ? Thanh Huyền

 

10 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)

\(x=0;x^2+3x+m=0\)(*)

để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0

\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)

từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)

ta tính \(y'=3x^2+6x+m\)

vì tiếp tuyến tại Dvà E vuông góc

suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)

giải pt đối chiếu với đk suy ra đc đk của m

5 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)

giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau

\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)

ta đc điều phải cm

27 tháng 10 2019

.

21 tháng 8 2017

a

29 tháng 10 2017

sai rồi B

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b