\(x\in\left(\dfrac{1}{3};5\right)\) thỏa mãn 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2020

Câu 2. Đặt A=x2+y2+1

Nhập \(2^A=\left(A-2x+1\right)4^x\) vào máy tính Casio. Cho x=0.01, tìm A

Máy sẽ giải ra, A=1.02=1+2x

\(\Leftrightarrow x^2+y^2+1=1+2x\)

\(\Leftrightarrow x^2+y^2-2x=1\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=1\) (C)

Có (C) là đường tròn tâm (1,0) bán kính R=1

Lại có: P=\(\frac{8x+4}{2x-y+1}\)

\(\Leftrightarrow x\left(2P-8\right)-yP+P-4=0\) (Q)

Có (Q) là phương trình đường thẳng.

Để x,y có nghiệm thì đường thẳng và đường tròn giao nhau nghĩa là d(I,(Q))\(\le R\)

\(\Leftrightarrow\frac{\left|x\left(2P-8\right)-yP+P-4\right|}{\sqrt{\left(2P-8\right)^2+P^2}}\le1\)

\(\Leftrightarrow\frac{\left|2P-8+P-4\right|}{\sqrt{\left(2P-8\right)^2+1}}\le1\)

\(\Leftrightarrow\left(3P-12\right)^2\le5P^2-32P+64\)

\(\Leftrightarrow4P^2-40P+80\le0\)

\(\Leftrightarrow5-\sqrt{5}\le P\le5+\sqrt{5}\)

Vậy GTNN của P gần số 3 nhất. Chọn C

24 tháng 3 2016

Ta có \(y'=3x^2-4\left(m-1\right)x+9\)

y' là tam thức bậc hai nên hàm số đạt cực đại, cực tiểu tại \(x_1,x_2\) khi và ch ỉ khi y' có hai nghiệm phân biệt

\(\Leftrightarrow\Delta=4\left(m-1\right)^2-27>0\) \(\Leftrightarrow\)\(\begin{cases}m>1+\frac{3\sqrt{3}}{2}\\m<1-\frac{3\sqrt{3}}{2}\end{cases}\) (1)

Theo Viet \(x_1+x_2=\frac{4\left(m-1\right)}{3}\)\(x_1x_2=3\)

Khi đó \(\left|x_1-x_2\right|=2\) \(\Leftrightarrow\) \(\left(x_1+x_2\right)^2-4x_1x_2=4\)

                                  \(\Leftrightarrow\frac{16\left(m-1\right)^2}{9}-12=4\)

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

27 tháng 4 2017

Hỏi đáp Toán

Câu 1: Cho hàm số \(y=f\left(x\right)\), biết \(f’\left(x\right)=k\left(\frac{\sqrt{m}-m}{m^2}\right)\left(x-k\right)\) ( m,k là các hằng số ). Tìm tấc cả các giá trị nguyên của \(m\) thuộc \(\left[0;2020\right]\) để đồ thị hàm số \(y=f\left(x\right)\) có duy nhất một cực đại tại \(x=k\) \(\forall k\in\left[1;10\right]\). a) 1 b) 2019 c) 2020 d) 0 Câu 2: Cho hàm số \(y=f\left(x\right)\) liên tục trên \(R\). Biết...
Đọc tiếp

Câu 1: Cho hàm số \(y=f\left(x\right)\), biết \(f’\left(x\right)=k\left(\frac{\sqrt{m}-m}{m^2}\right)\left(x-k\right)\) ( m,k là các hằng số ). Tìm tấc cả các giá trị nguyên của \(m\) thuộc \(\left[0;2020\right]\) để đồ thị hàm số \(y=f\left(x\right)\) có duy nhất một cực đại tại \(x=k\) \(\forall k\in\left[1;10\right]\).
a) 1

b) 2019

c) 2020

d) 0

Câu 2: Cho hàm số \(y=f\left(x\right)\) liên tục trên \(R\). Biết \(f‘\left(0\right)=1,f\left(1\right)=0\), GTLN hàm số \(f\left(x\right)\) trên đoạn \(\left[0;1\right]\) bằng \(\frac{4}{27}\) tại điểm \(x=\frac{1}{3}\)\(\int\limits^1_0f”\left(x\right)f’\left(x\right)dx=-\frac{1}{2}\). Hỏi phương trình \(f\left(\sqrt[3]{x}\right)=\sqrt[3]{x}\) có bao nhiêu nghiệm

a) 3

b) 2

c) 1

d) 0

Câu 3: Cho hàm số \(y=f\left(x\right)\)\(f’\left(x\right)=x\left(x-2\right)\left(x^2-x\right)^{11}\). Hỏi hàm số \(y=f\left(\frac{2\sqrt{x-2}}{x-2}\right)\) đồng biến trên khoảng

0
14 tháng 9

Bước 1: Phân tích \(2^{2025} + 2\)

Ta có:

\(2^{2025} + 2 = 2 \left(\right. 2^{2024} + 1 \left.\right)\)

Vậy phương trình trở thành:

\(\left(\right. 2 x + y \left.\right) \left(\right. 10 x + 3 y \left.\right) = 2 \left(\right. 2^{2024} + 1 \left.\right)\)


Bước 2: Quan sát tính chẵn/lẻ

  • \(2 x + y\)\(10 x + 3 y\) là các số tự nhiên.
  • Hãy xem chúng có thể chia 2 như thế nào.

Gọi \(a = 2 x + y\), \(b = 10 x + 3 y\). Ta có:

\(a \cdot b = 2 \left(\right. 2^{2024} + 1 \left.\right)\)

  • Nhận xét: \(2^{2024} + 1\)số lẻ.
  • Vậy \(2 \left(\right. 2^{2024} + 1 \left.\right)\)số chẵn nhưng không chia hết cho 4.
  • \(a \cdot b = 2 \cdot \left(\right. \text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{l}ẻ \left.\right)\), nghĩa là một trong hai số \(a\) hoặc \(b\) là chẵn, số còn lại là lẻ.

Bước 3: Thử phân tích

  • Nếu \(a = 2\)\(b = 2^{2024} + 1\)
    → Từ \(a = 2 = 2 x + y\)\(y = 2 - 2 x\)
    \(y \geq 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = 0 , 1\)
    1. \(x = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } y = 2\)
      \(b = 10 x + 3 y = 0 + 3 * 2 = 6 \neq 2^{2024} + 1\) → Không được.
    2. \(x = 1 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } y = 0\)
      \(b = 10 * 1 + 3 * 0 = 10 \neq 2^{2024} + 1\) → Không được.
  • Nếu \(b = 2\)\(a = 2^{2024} + 1\)
    \(10 x + 3 y = 2\) → Không có nghiệm tự nhiên vì 10x ≥0, 3y ≥0 mà tổng bằng 2.

Bước 4: Kết luận

  • Không thể phân tích \(2^{2025} + 2\) thành tích của hai số tự nhiên nhỏ như \(2 x + y\)\(10 x + 3 y\).
  • \(2^{2024} + 1\)số lẻ rất lớn, không thể biểu diễn dưới dạng \(2 x + y\) với \(x , y \in \mathbb{N}\).

Vậy không tồn tại cặp số tự nhiên \(\left(\right. x , y \left.\right)\) thỏa mãn phương trình.

GV
26 tháng 4 2017

a) \(\left(\dfrac{1}{16}\right)^{-\dfrac{3}{4}}+810000^{0.25}-\left(7\dfrac{19}{32}\right)^{\dfrac{1}{5}}\)

\(=\left(\dfrac{1}{2}\right)^{4.\left(-\dfrac{3}{4}\right)}+\left(30\right)^{4.0,25}-\left(\dfrac{243}{32}\right)^{\dfrac{1}{5}}\)

\(=\left(\dfrac{1}{2}\right)^{-3}+30-\left(\dfrac{3}{2}\right)^{5.\dfrac{1}{5}}\)

\(=2^3+30-\dfrac{3}{2}\)

\(=36,5\)

GV
26 tháng 4 2017

b) \(=\left(0,1\right)^{3.\left(-\dfrac{1}{3}\right)}-2^{-2}.2^{6.\dfrac{2}{3}}-\left[\left(2\right)^3\right]^{-\dfrac{4}{3}}\)

\(=0,1^{-1}-2^2-2^{-4}\)

\(=10-4-\dfrac{1}{16}\)

\(=\dfrac{95}{16}\)