\(\sqrt2\) là số vô tỉ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9

@Nguyễn Hà My౨ৎ
➜Chứng minh ngắn gọn:

\(\sqrt{22}\) là số vô tỉ (do 22 không phải số chính phương).
Nếu \(2 \sqrt{22}\) hữu tỉ thì \(\sqrt{22} = \frac{2 \sqrt{22}}{2}\) cũng hữu tỉ, mâu thuẫn.

\(\Rightarrow 2 \sqrt{22}\) là số vô tỉ.

Giả sử \(\sqrt2\) là số hữu tỉ

=>\(\sqrt2=\frac{a}{b}\) , với ƯCLN(a;b)=1

=>\(2=\frac{a^2}{b^2}\)

=>\(a^2=2b^2\)

=>\(a^2\) ⋮2

=>a⋮2

=>a=2k

\(2b^2=a^2=\left(2k\right)^2=4k^2\)

=>\(b^2=2k^2\) ⋮2

=>b⋮2

=>ƯCLN(a;b)<>1, trái với giả thiết ban đầu

=>\(\sqrt2\) không là số hữu tỉ

=>\(\sqrt2\) là số vô tỉ

27 tháng 10 2016

Chứng minh cái này thì đơn giản thôi! 
Mình xin trình bày cách chứng minh mà mình tâm đắc nhất: 
Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau) 
=>(m/n)^2=2 
=>m^2=2n^2 
=>m^2 chia hết cho 2 
=>m chia hết cho 2 
Đặt m=2k (k thuộc Z) 
=>(2k)^2=2n^2 
=>2k^2=n^2 
=> n^2 chia hết cho 2 
=> n chia hết cho 2. 
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau 
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.

2 tháng 7 2015

mk nghĩ thế này

a,b) Ta thấy: không có số nào mũ 2 lên được 15 và 2

=>\(\sqrt{15},\sqrt{2}\) là số vô tỉ

c) ta có: \(\sqrt{2}\) là số vô tỉ

mà Số tự nhiên - số vô tỉ luôn luôn là số vô tỉ

=>đpcm

nha bạn

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

22 tháng 10 2018

Giả sử căn 5 là số vô tỉ biểu thị bởi phân số tối giản p/q 
=> p/q = căn 5 =>p^2/ q^2 = 5 =>p^2 = 5q^2 
Như vậy p^2 chia hết cho 5 => p chia hết cho 5 => p= 5k 
Do đó 25k^2 = 5q^2 =>q^2 = 5k^2 => q^2 chia hết cho 5 nên q chia hết cho 5 
Vì p;q chia hết cho 5 nên p/q không tối giản (mâu thuẫn với giả thiết) 
Vậy căn 5 là số vô tỉ

22 tháng 10 2018

Nani???

Trường nào học nhanh vậy?

22 tháng 8 2015

giả sữ \(\sqrt{5}\) là số hữu tỉ

=> \(\sqrt{5}\) = \(\frac{m}{n}\) ( m thuộc Z; n thuộc N*; m/n ;à phân số tối giản)

=> 5\(n^2\)=\(m^2\)(*)

=> m chia hết cho 5(2)

=> m=5k (k thuộc Z)

thay vào (*) có:

5\(n^2\) = 25\(k^2\)

<=> n^2 = 5k^2

=>n chia hết cho 5 (2)

(1) (2) => m/n chưa tối giản (vô lí)

=> căn 5 là số vô tỉ

 

8 tháng 11 2016

Giả sử \(\sqrt{3}+1\) là số hữu tỉ

Vì 1 là số hữu tỉ nên \(\sqrt{3}\) là số hữu tỉ

\(\Rightarrow\sqrt{3}=\frac{m}{n}\left(m;n\in Z;n\ne0\right)\) (|m|; |n|)=1

\(\Rightarrow\frac{m^2}{n^2}=3\)

=> 3.n2 = m2

Giả sử p là ước nguyên tố của n => m2 chia hết cho p

Mà p nguyên tố nên m chia hết cho p

Lúc này, ƯCLN(|m|; |n|) = p, khác 1, trái với giả sử

=> \(\sqrt{3}+1\) là số vô tỉ (đpcm)