K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

12

24

36

48

60'72

84

96

108

120

12

24

36

48

60

72

84

96

208

120

132144

156

168

180

xét hiệu x3+y3+z3-3xyz

=(x+y)3+z3-3xy(x+y)-3xyz

=(x+y+z)3-3(x+y+z)(x+y)z-3xy(x+y+z)

=0       vì x+y+z=0

=>x3+y3+z3=3xyz

=>đpcm

4 tháng 5 2016

\(\Leftrightarrow\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)=2009\Leftrightarrow\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z+1\right)z\left(z+1\right)=2009\)

Ta thấy về trái chia hết cho 3, vế phải không chia hết cho 3 =>đpcm.

20 tháng 1 2019

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=\frac{9}{\left(x+y+z\right)^2}=9\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y+z=1\\x=y=z\end{cases}\Leftrightarrow x=y=z=\frac{1}{3}}\)

13 tháng 2 2019

ban chung minh gium mik bdt nha

15 tháng 10 2019

x^3+y^3+z^3+3(x+y)(y+z)(z+x)-x^3-y^3-z^3=3(x+y)(y+z)(z+x)

15 tháng 10 2019

tích di

20 tháng 12 2016

Một bài toán "lừa" người ta:

Đặt \(a=x-y,b=y-z,c=z-x\Rightarrow a+b+c=0\).

Ta có hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).

Trong trường hợp này thì \(a+b+c=0\) nên suy ra đpcm.