
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


hãy đổi các lũy thừa và xét từng số một trong biểu thức để xem nó có phải là hợp số hay không và kết luận

7^(20k+15)=7^20k.7^8.7^7=01.1.43=43 ( dấu "=" là đồng dư tại ko viết dc 3 gạch )
72015 = 72012.73 = (74)503.(....3) = (....1)503.(....3) = (...1).(...3) = (...3)
Vậy 72015 có tận cùng là 3

Nè, bài này mình chỉ làm được hai câu a,b thoi nha
a) Chứng minh: 432 + 43.17 chia hết cho 16
432 + 43.17 = 43.(43 + 17) = 43.60 ⋮ 60
b) Chứng minh: n2.(n + 1) + 2n(x + 1) chia hết cho 6 với mọi n ∈ Z
n2(n + 1) + 2n(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)
mà tích ba số tự nhiên liên tiếp chia hết cho 6 (một số chia hết cho 2, một số chia hết cho 3, UWCLL (2;3) = 1)
⇒n2 .(n + 1) + 2n(n + 1) + n(n + 1)(n + 2) ⋮ 6

Ta có \(\frac{7}{12}=\frac{4}{12}+\frac{3}{12}=\frac{1}{3}+\frac{1}{4}=\frac{20}{60}+\frac{20}{80}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)>\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}\right)=\frac{20}{60}+\frac{20}{80}=\frac{7}{12}\)Lại có \(\frac{5}{6}=\frac{2}{6}+\frac{3}{6}=\frac{1}{3}+\frac{1}{2}=\frac{20}{60}+\frac{20}{40}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)< \left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)=\frac{20}{40}+\frac{20}{60}=\frac{5}{6}\)
Bài toán đã được chứng minh

n^5-n=n(n^4-1)=n(n²-1)(n²-4+5)
=(n-2)(n-1)n(n+1)(n+2)+5(n-1)n(n+1) (a)
*Vì (n-2)(n-1)n(n+1)(n+2) là tíc 5 số tự nhiên ltiếp nên chia hết cho 2,5 nên chia hết cho 10
( vì (2,5)=1) (b)
*Vì (n-1)n(n+1) là tích 3 số nguyên ltiếp nên chia hết cho 2 =>5(n-1)n(n+1) chia hết cho 10 (c)
Từ (a),(b),(c)=>n^5-n chia hết cho 10 nên n^5 và n có cùng dư khi chia cho 10
Đặt dư là r(r thuộc N,0≤r≤9) ta có:n^5=10k+r,n=10h+r đều có tận cùng là r (đpcm)
k mk đi
A = n^5 - n = n(n^4-1) = n(n^2 +1)(n^2 -1) =n(n^2 +1)(n+1)(n-1)
* n(n +1) chia hết cho 2 => A chia hết cho 2.
*cm: A chia hết cho 5.
n chia hết cho 5 => A chia hết cho 5.
n không chia hết cho 5 => n = 5k + r (với r =1,2,3,4)
- r = 1 => n - 1 = 5k chia hết cho 5 => A chia hết cho 5
- r = 2 => n^2 + 1 = 25k^2 + 20k + 5 chia hết cho 5 => A chia hết cho 5
- r = 3 => n^2 + 1 = 25k^2 + 30k + 10 chia hết cho 5 => A chia hết cho 5
- r = 4 => n +1 = 5k + 5 chia hết cho 5 => A chia hết cho 5
=> A luôn chia hết cho 5
2,5 nguyên tố cùng nhau => A chia hết cho 2.5=10 => A tận cùng là 0
=>đpcm
Sử dụng phép đồng dư nhá bạn.
\(7\equiv7\)(mod 100)
\(7^3\equiv43\)(mod 10)
\(7^4=1\)(mod 10)
\(\left(7^4\right)^{10}\equiv1^{10}=1\) (mod 10)
\(7^{40}.7^3\equiv1.43\equiv43\) (mod10)
Vậy .....................................
ta có: 7^34=7^4.10+3=7^4.10 .7^3=(7^4)^10 .7^3=2401^10 .343=...01.343=...43
=> dpcm