K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 giờ trước (21:58)

A=223+328+4215+...+2023220232−1

\(A = \frac{2^{2} - 1}{2^{2}} + \frac{3^{2} - 1}{3^{2}} + \frac{4^{2} - 1}{4^{2}} + . . . + \frac{202 3^{2} - 1}{202 3^{2}}\)

\(A = 1 - \frac{1}{2^{2}} + 1 - \frac{1}{3^{2}} + 1 - \frac{1}{4^{2}} + . . . + 1 - \frac{1}{202 3^{2}}\)

\(A = \left(\right. 1 + 1 + 1 + . . . + 1 \left.\right) - \left(\right. \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + . . + \frac{1}{202 3^{2}} \left.\right)\)

Tổng số hạng của 2 ngoặc trên bằng nhau và =(2023-2):1+1=2022(số hạng)

\(A = 2022 - \left(\right. \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + . . . + \frac{1}{202 3^{2}} \left.\right)\)

Ta thấy:

\(0 < \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + . . . + \frac{1}{202 3^{2}} < \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + . . + \frac{1}{2022.2023}\)

Ta có

\(\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + . . + \frac{1}{2022.2023}\)

\(= 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + . . + \frac{1}{2022} - \frac{1}{2023}\)

\(= 1 - \frac{1}{2023} < 1\)

Do đó,2021<A<2022 

Vậy giá trị của A không phải 1 số tự nhiên(đpcm)

28 tháng 2 2020

\(A=3+3^2+3^3+...+3^{100}\)

\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(\Leftrightarrow2A=3^{101}-3\)

\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)

\(\Leftrightarrow A< B\)

28 tháng 2 2020

a. tính A = 3+3^2+3^3+3^4+.....+3^100

3A=3^2+3^3+3^4+3^5+....+3^100

3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100

mà B=3^100-1 => A<B

22 tháng 3 2017

1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số

Gọi số phải tìm là A

Ta có A + 4 chia hết cho 5 , 7 , 9

Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315

Do đó A = 315 - 4 = 311

2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100

S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )

S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )

S = 1.30 +...+2^96.30

S = ( 1 +...+2^96 )30

Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15

Hay S chia hết cho 15

b) Vì S cha hết cho 30 nên S chia hết cho 10

Suy ra S có tận cùng là 0

c) S = 2^1 + 2^2 + 2^3 +...+2^100

2S = 2^2 + 2^3 + 2^4 +...+ 2^101

2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )

S = 2^101 - 2^1

S = 2^101 - 2

22 tháng 3 2017

1. 158

2a. 0 ( doan nha )

b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )

      = 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)

      = 2.15+2^5.15+...+2^97.15

      = 15.(2+2^5+...+2^97) chia het 15

c.2^101-2^1

3. chiu !

8 tháng 11 2018

Bài 1 : Ta có : S = 1 + 2 + 22 + 23 + ... + 29

                     2S = 2(1 + 2 + 22 + 23 + ... + 29)

                     2S = 2 + 22 + 23 + ... + 210

                 2S -  S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)

                        S = 210 - 1 = 28.4 - 1

Vậy S < 5 x 28

9 tháng 11 2018

Bn có thể giải cho mik bài2 và bài4 đc ko ngay bây giờ nhé

24 tháng 8 2018

Ta có:
(1+1/3+1/5+...+1/99) - (1/2+1/4+1/6+...+1/100)
= (1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100...-2(1/2+1/4+1/6+...+1/100) (tức là ta tự cộng thêm vào dấu ngoặc đầu 1/2+1/4+1/6+...+1/100 thì phải trừ bớt ra 1/2+1/4+1/6+...+1/100 do đó ta ghép vào dấu ngoặc sau nên thêm vào số 2 đằng trước dấu ngoặc sau )
=(1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100...- (1+1/2+1/3+...+1/50) (ta nhân phân phối số 2 vào ngoặc sau làm các mẫu giảm 2 lần)
=1/51+1/52+1/53+...+1/100 (đpcm)

24 tháng 1 2024

T_T