K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên

19 tháng 1 2022
Vì n là số lẻ n=2k-1
Số số hạng là (2k-1-1):2+1=k-1+1=k(số)
Tổng là \(\dfrac{\left(2k-1+1\right)\cdot k}{2}=k^2\)
NK
0


AH
Akai Haruma
Giáo viên
22 tháng 11 2021
Lời giải:
Đặt $n=2k+1$
Số số hạng: $\frac{n-1}{2}+1=\frac{2k+1-1}{2}+1=k+1$
Tổng A là:
$A=\frac{(k+1)(2k+1+1)}{2}=\frac{2(k+1)^2}{2}=(k+1)^2$ là số chính phương (đpcm)

YH
21 tháng 6 2021
Ta có:
A=1+3+5+7+...+n(n lẻ)A=1+3+5+7+...+n(n lẻ)
Số số hạng:
n−12+1=n−1+22=n+12(số hạng)n-12+1=n-1+22=n+12(số hạng)
⇒⇒
A=(n+1).n+122=(n+1)(n+1)2:2=(n+1)22.12=(n+1)222=(n+12)2A=(n+1).n+122=(n+1)(n+1)2:2=(n+1)22.12=(n+1)222=(n+12)2
Vậy A là số chính phương.
HokT~
NT
0

KL
2

1 tháng 7 2015
n số lẻ đầu tiên là: 1; 3; 5 ; ...; 2n - 1
Tổng của n số lẻ là: (1+ 2n- 1) x n : 2 = 2n2 : 2 = n2 là số chính phương
Vậy ....
Ta có : \(1+3+5+...+n\)
\(=\dfrac{\left(\dfrac{n-1}{2}+1\right)\cdot\left(n+1\right)}{2}=\dfrac{\left(n+1\right)^2}{4}=\left(\dfrac{n+1}{2}\right)^2\) là số chính phương.
https://olm.vn/hoi-dap/detail/10723222015.html vào link này nhé