Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử cả ba BĐT đều đúng, khi đó a(1−b)b(1−c)c(1−a)>164a(1−b)b(1−c)c(1−a)>164
Nhưng theo BĐT CauChy thì a(1−a)≤(a+1−a2)2=14a(1−a)≤(a+1−a2)2=14, tương tự ta có
a(1−b)b(1−c)c(1−a)≤164a(1−b)b(1−c)c(1−a)≤164, mâu thuẩn
Giả sử a(1-b),b(1-c),c(1-a)>1/4
=> a(1-b).b(1-c).c(1-a)>(1/4)3
=> a(1-a).b(1-b).c(1-c)>(1/4)^3
Ta có a(1-a)=1/4-(1/2-a)2<1/4
CMTT b(1-b), c(1-c) <1/4
=> a(1-b).b(1-c).c(1-a)<(1/4)3 trái với giả sử
=> 1 trong các BĐT sai

Bài làm
Ta có: 3a3 + 3a2b + 3ab2 + 3b3
= 3( a3 + a2b + ab2 + b3 )
= 3[ a2( a + b ) + b2( a + b ) ]
= 3( a2 + b2 )( a + b )
Ta có: ( a2 + b2 ) > 0 V a, b
=> ( a2 + b2 ) . 3 > 0
Mà 3( a2 + b )2( a + b ) > 0 ( đpcm )
\(3a^3+3a^2b+3ab^2+3b^3>0\)
\(\Leftrightarrow3\left(a^3+a^2b+ab^2+b^3\right)>0\)
\(\Leftrightarrow3\left[a^2\left(a+b\right)+b^2\left(a+b\right)\right]>0\)
\(\Leftrightarrow3\left(a^2+b^2\right)\left(a+b\right)>0\)(đpcm)

Dùng điểm rơi a=b=1
Gọi M là biểu thức đầu bài ta có
\(M=\frac{3}{2}\sqrt{\left(3a+1\right).4}+\sqrt{\left(3b+1\right).4}\le\frac{3}{4}\left(3a+5\right)+\frac{1}{2}\left(3b+5\right)\)
\(=\frac{9a+6b}{4}+\frac{25}{4}=\frac{15}{4}+\frac{25}{4}=10\)

1)a+3>b+3
=>a>b
=>-2a<-2b
=>-2a+1<-2b+1
2)x>0;y<0 =>x2.y<0;x.y2>0
=>x2.y<0;-x.y2<0
=>x2y-xy2<0
1.ta có a+3>b+3
suy ra -2a-6>-2b-6
=> (-2a-6)+5>(-2b-6)+5
=>-2a+1>-2b+1
2.vì x>0=> x^2>0 và y<0=>y^2>0
=> x^2*y<0 và x*y^2>0
=> x*y^2>x^2*y
=>x^2*y-x*y^2<0

Giả sử \(a\left(2-b\right)>1,b\left(2-c\right)>1,c\left(2-a\right)>1\)
\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)>1\) (1)
Mặt khác, ta có:
\(a\left(2-a\right)=-a^2+2a=-\left(a-1\right)^2+1\le1\)
Tương tự, \(b\left(2-b\right)\le1,c\left(2-c\right)\le1\)
\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)\le1\),điều này trái với (1)
Vậy điều giả sử là sai.
Do đó ít nhất 1 trong 3 bất đẳng thức trên là sai.

2 ) đề sai rùi bạn ơi ! Mk giải theo đề đúng nka !!
CMR : nếu \(a+b>1\)thì \(a^2+b^2>\frac{1}{2}\)
Ta có : \(a+b>1>0\) ( 1 )
Bình phương hai vế ta được :
\(\left(a+b\right)^2>1\)\(\Leftrightarrow a^2+2ab+b^2>1\) ( 2 )
Mặt khác :
\(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2-2ab+b^2\ge0\) ( 3 )
Cộng từng vế của (2) và (3) , ta được:
\(2a^2+2b^2>1\)\(\Leftrightarrow2\left(a^2+b^2\right)>1\)\(\Leftrightarrow a^2+b^2>\frac{1}{2}\left(dpcm\right)\)
tk cko mk nka vì công ngồi đánh máy tình !!!
Biết \(a>b\)và \(b>2\)\(\Leftrightarrow a>2\)
Ta có : \(a>2\)
\(\Leftrightarrow-3a< -6\)( Nhân 2 vế với -3 bất đẳng thức đổi chiều )
\(\Leftrightarrow-3a+6< 0\)(Cộng 2 vế với 6)
\(\Leftrightarrowđpcm\)
tk nka !1