\(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1.CM:x^2+y^2=1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2020

đk: \(0\le x,y\le1\)

Ta có: \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)

\(\Leftrightarrow x\sqrt{1-y^2}=1-y\sqrt{1-x^2}\)

\(\Leftrightarrow x^2\left(1-y^2\right)=\left(1-y\sqrt{1-x^2}\right)^2\)

\(\Leftrightarrow x^2-x^2y^2=1+y^2\left(1-x^2\right)-2y\sqrt{1-x^2}\)

\(\Leftrightarrow2y\sqrt{1-x^2}=y^2-x^2+1\)

\(\Leftrightarrow4y^2\left(1-x^2\right)=\left(y^2-x^2+1\right)^2\)

\(\Leftrightarrow4y^2-4x^2y^2=y^4+x^4+1-2x^2y^2-2x^2+2y^2\)

\(\Leftrightarrow x^4+y^4-2x^2y^2-2x^2-2y^2+1=0\)

\(\Leftrightarrow\left(x^2+y^2-1\right)^2=0\)

\(\Leftrightarrow x^2+y^2-1=0\)

\(\Rightarrow x^2+y^2=1\)

26 tháng 10 2020

Áp dụng bất đẳng thức Bunyakovsky, ta được: \(1=\left(x\sqrt{1-y^2}+y\sqrt{1-x^2}\right)^2\le\left(x^2+y^2\right)\left[\left(\sqrt{1-y^2}\right)^2+\left(\sqrt{1-x^2}\right)^2\right]=\left(x^2+y^2\right)\left(2-x^2-y^2\right)\)Đặt \(x^2+y^2=t\)thì ta có \(t\left(2-t\right)\ge1\Leftrightarrow\left(t-1\right)^2\le0\)

Mà \(\left(t-1\right)^2\ge0\forall t\inℝ\)nên t - 1 = 0 suy ra t = 1 hay x2 + y2 = 1 (đpcm)

NV
26 tháng 9 2019

\(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)

\(\Rightarrow\left\{{}\begin{matrix}2018\left(x+\sqrt{x^2+2018}\right)=2018\left(\sqrt{y^2+2018}-y\right)\\2018\left(y+\sqrt{y^2+2018}\right)=2018\left(\sqrt{x^2+2018}-x\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+\sqrt{x^2+2018}=\sqrt{y^2+2018}-y\\y+\sqrt{y^2+2018}=\sqrt{x^2+2018}-x\end{matrix}\right.\)

Cộng vế với vế:

\(x+y=-x-y\Rightarrow x=-y\)

\(\Rightarrow x^{2019}=-y^{2019}\Rightarrow x^{2019}+y^{2019}=0\)

29 tháng 8 2019

a, ĐKXĐ : \(\left[{}\begin{matrix}x\ge0\\ y>0\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x>0\\y\ge0\end{matrix}\right.\)

Ta có :\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\frac{\sqrt{x^2}\sqrt{x}+\sqrt{y^2}\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)

= \(\left(x-\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\)

= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

= \(\sqrt{xy}\)

29 tháng 8 2019

\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\) \(=\sqrt{\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{b}+1\right)\left(\sqrt{b}-1\right)}}\)\(=\sqrt{\frac{a^2-1}{b^2-1}}\) (*)

Thay a=7,25 và b= 3,25 vào (*) ta có:

\(\sqrt{\frac{7,25^2-1}{3,25^2-1}}\) \(=\frac{5\sqrt{33}}{4}:\frac{3\sqrt{17}}{4}=\frac{5\sqrt{33}}{3\sqrt{17}}=\frac{5\sqrt{561}}{51}\)

14 tháng 12 2017

<br class="Apple-interchange-newline"><div id="inner-editor"></div>x>2;y>1

Khi đó Pt 36√x−2 +4√x−2+4√y−1 +√y−1=28

theo BĐT Cô si ta có 36√x−2 +4√x−2≥2.√36√x−2 .4√x−2=24

                                  và 4√y−1 +√y−1≥2√4√y−1 .√y−1=4

Pt đã cho có VT>= 28 Dấu "=" xảy ra 

36√x−2 =4√x−2⇔x=11

và 4√y−1 =√y−1⇔y=5

Đối chiếu với ĐK thì x=11; y=5 là nghiệm của PT

4 tháng 8 2016

a)\(\left(2\sqrt{x}-3\right)\left(2+\sqrt{x}\right)+6=0\)

\(\Leftrightarrow4\sqrt{x}+2x-6-3\sqrt{x}+6=0\)

\(\Leftrightarrow2x-\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=0\\2\sqrt{x}-1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{4}\end{array}\right.\)

 

4 tháng 8 2016

Đăng từng câu thôi 

10 tháng 6 2018

\(\text{a) }\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\\ =\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)\left(x-y\right)}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{x}+y\sqrt{y}-x\sqrt{x}+x\sqrt{y}+y\sqrt{x}-y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\\ =\sqrt{xy}\)

\(\text{b) }\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(\text{c) }\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\\ =\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^4}}\\ =\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}\\ =\dfrac{\sqrt{y}-1}{x-1}\)

10 tháng 6 2018

a)\(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

\(=\dfrac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{x}\sqrt{y}+y\right)\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x+2\sqrt{xy}+y\)

\(=x+\sqrt{xy}+y-x+2\sqrt{xy}+y\)

\(=3\sqrt{xy}+2y\)

25 tháng 7 2016

hiểu chưa 

25 tháng 7 2016

hieu chet lien