K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2019

a.

Theo định lý Thales,ta có:

 \(OE//BC\) nên \(\frac{AE}{EB}=\frac{AO}{OC}\left(1\right)\)

\(OF//CD\) nên \(\frac{AF}{FD}=\frac{AO}{OC}\left(2\right)\)

Từ (1);(2) suy ra \(\frac{AE}{EB}=\frac{AF}{FD}\Rightarrow FE//BD\) theo ĐL Thales đảo.

b.

Theo định lý Thales,ta có:

\(OG//AB\) nên \(\frac{AO}{OC}=\frac{BG}{GC}\left(3\right)\)

\(OH//AD\) nên \(\frac{AO}{OC}=\frac{DH}{HC}\left(4\right)\)

Từ (3);(4) suy ra:\(\frac{BG}{GC}=\frac{DH}{HC}\Rightarrow BG\cdot CH=CG\cdot DH\left(đpcm\right)\)

14 tháng 7 2017

Phương An cứu =(((

Sửa đề: Cho hình thang ABCD có AB//CD
a: Xét ΔADC có OM//DC

nên \(\frac{AM}{AD}=\frac{AO}{AC}\left(1\right)\)

Xét ΔBAC có ON//AB

nên \(\frac{OC}{OA}=\frac{CN}{NB}\)

=>\(\frac{AO}{OC}=\frac{BN}{NC}\)

=>\(\frac{AO}{OC+OA}=\frac{BN}{BN+NC}\)

=>\(\frac{AO}{AC}=\frac{BN}{BC}\left(2\right)\)

Từ (1),(2) suy ra \(\frac{AM}{AD}=\frac{BN}{BC}\)

b: Xét tứ giác DMOE có

MO//DE

OE//MD

Do đó: DMOE là hình bình hành

=>DM=OE; DE=OM

Xét ΔADC có MO//DC
nên \(\frac{MO}{DC}=\frac{AM}{AD}\)

c: Xét ΔBDC có ON//DC

nên \(\frac{ON}{DC}=\frac{BN}{BC}\)

\(\frac{MO}{DC}=\frac{AM}{AD}\)

\(\frac{BN}{BC}=\frac{AM}{AD}\)

nên OM=ON(1)

Xét tứ giác FCNO có

FC//NO

FO//NC

Do đó: FCNO là hình bình hành

=>FC=ON(2)

Từ (1),(2) suy ra FC=OM

mà OM=DE

nên FC=DE

d: Xét ΔDAB có OM//AB

nên \(\frac{OM}{AB}=\frac{DM}{DA}\)

Xét ΔADC có OM//DC
nên \(\frac{OM}{DC}=\frac{AM}{AD}\)

\(\frac{OM}{AB}+\frac{OM}{DC}=\frac{DM}{DA}+\frac{AM}{AD}=1\)

=>\(OM\left(\frac{1}{AB}+\frac{1}{DC}\right)=1\)

=>\(\frac{1}{AB}+\frac{1}{DC}=\frac{1}{OM}=\frac{2}{MN}\)

26 tháng 12 2018

Theo định lý Ta-lét:

Ta có: AE // BC nên O E O B = O A O C  (1) hay A đúng.

BG // AD nên O B O D = O G O A   (2) hay C đúng

Từ (1) và (2) suy ra: O E O B . O B O D = O A O C . O G O A  hay O E O D = O G O C , do đó EG // CD (định lí Talet đảo) hay D đúng

Vậy B sai

Đáp án: B