Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc C=360-90-60-135=210-135=75 độ
b: Xét ΔABD có AB=AD và góc BAD=60 độ
nên ΔABD đều

a: Xét tứ giác ABKD có \(\hat{BAD}=\hat{ADK}=\hat{BKD}=90^0\)
nên ABKD là hình chữ nhật
=>AB=DK và BK=AD
AB=DK
mà AB=4cm
nên DK=4cm
Ta có: DK+KC=DC
=>KC=DC-DK=9-4=5(cm)
ΔBKC vuông tại K
=>\(BK^2+KC^2=BC^2\)
=>\(BK^2=13^2-5^2=144=12^2\)
=>BK=12(cm)
mà BK=AD
nên AD=12cm
M là trung điểm của AD
=>\(AM=MD=\frac{AD}{2}=\frac{12}{2}=6\left(\operatorname{cm}\right)\)
b: Xét ΔABM vuông tại A và ΔDMC vuông tại D có
\(\frac{AB}{DM}=\frac{AM}{DC}\left(\frac46=\frac69=\frac23\right)\)
Do đó: ΔABM~ΔDMC
c: ΔABM~ΔDMC
=>\(\hat{ABM}=\hat{DMC}\)
mà \(\hat{ABM}+\hat{AMB}=90^0\) (ΔAMB vuông tại A)
nên \(\hat{DMC}+\hat{AMB}=90^0\)
Ta có: \(\hat{AMB}+\hat{BMC}+\hat{CMD}=180^0\)
=>\(\hat{BMC}=180^0-90^0=90^0\)