Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) từ I kẻ HI//AB//DC
=> GÓC HID= GÓC IDC ( SLT)
MÀ IDC=IDH => GÓC HID=GÓC IDH => TAM GIÁC HID CÂN TẠI H => HD=HI
TƯƠNG TỰ CHỨNG MINH TAM GIÁC HIA CÂN TẠI H => HI=HA
=> HA=HD => H LÀ TRUNG ĐIỂM AD
MÀ HI//AC//CD => I PHẢI LÀ TRUNG ĐIỂM BC
=> HI LÀ ĐTB CỦA HÌNH THANG
=> HI= (AB+CD)/2 (1)
MẶT KHÁC TRONG TAM GIÁC IAD:
GÓC ADI + GÓC IDA=1/2 GÓC A +1/2 GÓC D=1/2 (A+D)=1/2 180=90 ( ABCD LÀ HÌNH THANG => A+D=180)
=> TAM GIÁC ADI VUÔNG TẠI I. HI LÀ TRUNG TUYẾN => HI=AD/2 (2)
TỪ (1;2) => ĐPCM
B) GỌI PG GÓC A CẮT PG GÓC D TẠI I
TỪ I TA KẺ HI//AB//CD (H THUỘC AD)
=> .... ( ĐẾN ĐÂY C/M NHƯ TRÊN ĐỂ => H LÀ TĐ CỦA AD, TAM GIÁC ADI VUÔNG)
=> HI= AD/2.
TA CÓ: AD=AB+CD => HI=AB+CD/2 HAY HI= NỬA TỔNG 2 ĐÁY
H LÀ TRUNG ĐIỂM AD, HI//AB//CD. HI = NỬA TỔNG HAI ĐÁY => I PHẢI LÀ TRUNG ĐIỂM BC => AI CẮT DI TẠI I THUỘC BC

Vẽ BO vuông góc AC tại O
DO phải cắt một trong 2 đoạn thẳng DC,DA. Giả sử BO cắt CD
Trên BO lấy E sao cho CD=CE
Tứ giác ABCE có:
AB2+CE2=BC2+AE2AB2+CE2=BC2+AE2
⇒AB2+CD2=BC2+AE2⇒AB2+CD2=BC2+AE2
Mà ⇒AB2+CD2=BC2+AD2⇒AB2+CD2=BC2+AD2
⇒D≡E⇒D≡E
⇒⇒ BD vuông góc AC.
⇒SABCD=BD.AC2⇒SABCD=BD.AC2
Nếu BD.AC2=AC2+BD24⇔(AC−BD)2=0BD.AC2=AC2+BD24⇔(AC−BD)2=0
Đẳng thức này chỉ xảy ra khi AC=BD

Câu hỏi của trần trúc quỳnh - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại đây nhé.

a)
Từ ĐKĐB dễ thấy các tứ giác ABID,ABCK là hình bình hành do có các cặp cạnh đối song song với nhau
\(\Rightarrow AB=DI;AB=CK\Rightarrow DI=CK\Rightarrow DK=CI\)
Áp dụng định lý Ta-lét:
\(AB||DK\Rightarrow\frac{DE}{EB}=\frac{DK}{AB}\)
\(AB||CI\Rightarrow\frac{IF}{FB}=\frac{CI}{AB}\)
Maf \(CI=DK\)(cmt)
\(\Rightarrow\frac{DE}{EB}=\frac{IF}{FB}\)Theo định lý Ta-let đảo suy ra EF\(||\)CD
b)Từ các đường thẳng song song, và DI=CK=AB, áp dụng định lý Ta-let:
\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CE-CK}{AB}=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)
\(\Rightarrow AB^2=EF.CD\)( đpcm )
a: Bổ sung đề; IB=ID\(AB^2+CB^2=IA^2+IB^2+IC^2+IB^2=IA^2+2\cdot IB+IC^2\)
\(DC^2+AD^2=ID^2+IC^2+IA^2+ID^2=IA^2+IC^2+2\cdot ID^2\)
mà IB=ID
nên \(AB^2+CB^2=DC^2+AD^2\)
b: \(\left(BC-AB\right)^2=BC^2+AB^2-2\cdot BC\cdot AB\)
\(\left(CD-AD\right)^2=CD^2+AD^2-2\cdot CD\cdot AD\)
mà \(-2\cdot BC\cdot AB>-2\cdot CD\cdot AD\)
nên \(\left(BC-AB\right)^2>\left(CD-AD\right)^2\)
=>BC-AB>CD-AD