K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

a, Vì O là trung điểm EF

MN qua O //AB//CD

=>M là trung điểm AD, N là TD BC

18 tháng 9 2017

Nối BD. Gọi O là trung điểm DB
Xét tam giác ABD
Có: M là trung điểm AB ( gt)
O là trung điểm DB ( cách lấy O)
\(\Rightarrow\) OM là đường trung bình  ABD
\(\Rightarrow\)OM // AD, OM = \(\frac{1}{2}\) AD ( đl)
\(\Rightarrow\)góc AEM = OMN ( 2 góc đồng vị) (1)
Tương tự ta chứng minh được ON là đường trung bình tam giác DBC
\(\Rightarrow\) ON // BC; BC
\(\Rightarrow\)góc OMN = MFB ( 2 góc so le trong) (2)
Mà AD = Bc (gt)
\(\Rightarrow\)OM=ON ( \(\frac{1}{2}\)AD)
Xét OMN
có OM = ON
\(\Rightarrow\) Tam giác OMN cân tại O ( đn)
\(\Rightarrow\) góc OMN = ONM ( đl) (3)
Từ (1); (2); (3) \Rightarrow góc AEM = MFB ( đpc/m)

6 tháng 12 2018

cho xin cái hình

1: Xét ΔCAB có

F,E lần lượt là trung điểm của CA,CB

=>FE là đường trung bình của ΔCAB

=>FE//AB và \(FE=\dfrac{AB}{2}\)

Xét ΔDAB có

G,H lần lượt là trung điểm của DA,DB

=>GH là đường trung bình của ΔDAB

=>GH//AB và \(GH=\dfrac{AB}{2}\)

GH//AB

FE//AB

Do đó: GH//FE

Ta có: \(GH=\dfrac{AB}{2}\)

\(FE=\dfrac{AB}{2}\)

Do đó: GH=FE

Xét tứ giác EFGH có

GH=FE

GH//FE

Do đó: EFGH là hình bình hành

2: AB=CD
mà AB=8cm

nên CD=8cm

Xét ΔADC có

G,F lần lượt là trung điểm của AD,AC

=>GF là đường trung bình của ΔADC

=>GF//DC và \(GF=\dfrac{DC}{2}=4cm\)

GF//DC

DC\(\perp\)AB

Do đó: GF\(\perp\)AB

Ta có: GF\(\perp\)AB

AB//GH

Do đó: GH\(\perp\)GF

Xét hình bình hành GHEF có GH\(\perp\)GF

nên GHEF là hình chữ nhật

=>\(S_{GHEF}=GH\cdot GF=\dfrac{AB}{2}\cdot\dfrac{CD}{2}=4\cdot4=16\left(cm^2\right)\)

5 tháng 12 2023

1: Xét ΔCAB có

F,E lần lượt là trung điểm của CA,CB

=>FE là đường trung bình của ΔCAB

=>FE//AB và FE=AB

2

Xét ΔDAB có

G,H lần lượt là trung điểm của DA,DB

=>GH là đường trung bình của ΔDAB

=>GH//AB và GH=AB

2

GH//AB

FE//AB

Do đó: GH//FE

Ta có: GH=AB2

 

F

E

=

A

B

2

 

Do đó: GH=FE

 

Xét tứ giác EFGH có

 

GH=FE

 

GH//FE

 

Do đó: EFGH là hình bình hành

 

2: AB=CD

mà AB=8cm

 

nên CD=8cm

 

Xét ΔADC có

 

G,F lần lượt là trung điểm của AD,AC

 

=>GF là đường trung bình của ΔADC

 

=>GF//DC và 

G

F

=

D

C

2

=

4

c

m

 

GF//DC

 

DC

AB

 

Do đó: GF

AB

 

Ta có: GF

AB

 

AB//GH

 

Do đó: GH

GF

 

Xét hình bình hành GHEF có GH

GF

 

nên GHEF là hình chữ nhật

 

=>

S

G

H

E

F

=

G

H

G

F

=

A

B

2

C

D

2

=

4

4

=

16

(

c

m

2

)

5 tháng 12 2023

Nó bị lỗi r