Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Theo hệ thức lượng trong tam giác vuông AMB ta có
\(cos\alpha=\frac{MA}{AB}\Leftrightarrow MA=2a.cos\alpha\)
\(sin\alpha=\frac{MB}{AB}\Rightarrow MB=2a.sin\alpha\)
Vì \(\hept{\begin{cases}MH\perp d\\AB\perp d\end{cases}\Rightarrow MH//AB}\)
=> MH=KB
mà \(KB=AB-AK=2a-MA.cos\alpha=2a-2a.cos^2\alpha\)

b) MN = AN = 1/2 AC (đường trung tuyến ứng với cạnh huyền trong tam giác AMC vuông tại M)
tam giác AON = tam giác MON (c.c.c)
=> góc OMN = 90đ hay OM vuông góc NM => NM là tiếp tuyến
c) có NM Là tiếp tuyến (câu b)
=> góc O1= góc O2 , góc O3 = góc O4 (t/c hai tiếp tuyến cắt nhau)
có O1+O2+O3+O4 = 180đ
=> O2+O3 = 90đ
=> tam giác NOD vuông tại O
Xét tam giác vuông NOD, đường cao OM
=> tam giác OMN đồng dạng với tam giác DMO
=> \(\frac{NM}{OM}=\frac{OM}{MD}\)
=>\(\frac{AN}{OM}=\frac{OM}{DB}\)
=> AN.BD=\(R^2\)
d) có AN.BD=\(R^2\)
=> 2AN . BD = 2 R.R
=>AC.BD = AB . OA
=>\(\frac{AC}{AB}=\frac{OA}{BD}\)
=> tam giác AOC đồng dạng với tam giác BDA
=>góc AOC = góc ADB
Gọi K là giao điểm của AD và OC
=> tam giác AOK đồng dạng ADB (g.g)
=>góc OKA = góc DBA = 90đ
=> \(AD\perp OC\)

đề bài : Cho tam giác MAB vuông tại H ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng
đúng hog