Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
hay AH=2,4(cm)
Xét tứ giác AMHN có
\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật
Suy ra: AH=MN=2,4(cm)

c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

a) Xét tam giác ABC vuông tại A, đường cao AH có:
B C 2 = A B 2 + A C 2 = 25 ⇒ BC = 5(cm)
AB2 = BH.BC ⇒ BH = AB2/BC = 9/5 = 1,8(cm)
BH + CH = BC⇒ CH = BC - BH = 5 - 1,8 = 3,2 (cm)
A H 2 = BH.CH ⇒ AH = B H . C H = 1 , 8 . 3 , 2 = 2,4 (cm)
Xét tứ giác AMHN có:
∠(MAN) = ∠(ANH) = ∠(AMH) = 90 0
⇒ Tứ giác AMHN là hình chữ nhật
⇒ MN = AH = 2,4 (cm)

Sửa đề: Chứng minh \(\frac{S_{ABI}}{S_{AMN}}=\frac{1}{2\cdot\sin^2B}+\frac{1}{2cos^2HAC}\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC;AB^2=BH\cdot BC;AC^2=CH\cdot CB\)
Ta có: \(\frac{1}{2\cdot\sin^2B}+\frac{1}{2cos^2HAC}\)
\(=\frac{1}{2\cdot\sin^2B}+\frac{1}{2\cdot cos^2B}=\frac12\left(\frac{1}{\sin^2B}+\frac{1}{cos^2B}\right)\)
\(=\frac12\cdot\frac{\sin^2B+cos^2B}{\left(\sin B\cdot cosB\right)^2}=\frac12\cdot\frac{1}{\left(\sin B\cdot cosB\right)^2}\)
\(=\frac12\cdot\frac{1}{\left(\frac{AC}{BC}\cdot\frac{AB}{BC}\right)^2}=\frac12\cdot\frac{1}{\left(\frac{AB\cdot AC}{BC^2}\right)^2}=\frac12\cdot\left(\frac{1}{\frac{AH\cdot BC}{BC^2}}\right)^2\)
\(=\frac12\cdot\left(\frac{BC}{AH}\right)^2\) (2)
Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\)
=>\(AM=\frac{AH^2}{AB}\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AH^2=AN\cdot AC\)
=>\(AN=\frac{AH^2}{AC}\)
ΔABC có AH là đường cao
nên \(S_{ABC}=\frac12\cdot AH\cdot BC\)
ΔAMN vuông tại A
=>\(S_{AMN}=\frac12\cdot AM\cdot AN=\frac12\cdot\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac12\cdot\frac{AH^4}{AH\cdot BC}=\frac12\cdot\frac{AH^3}{BC}\)
=>\(\frac{S_{AMN}}{S_{ABC}}=\frac{AH^3}{2\cdot BC}:\frac{AH\cdot BC}{2}=\frac{AH^3}{2\cdot BC}\cdot\frac{2}{AH\cdot BC}=\frac{AH^2}{BC^2}\)
=>\(\frac{S_{ABC}}{S_{AMN}}=\frac{BC^2}{AH^2}\)
I là trung điểm của BC
=>\(\frac{BI}{BC}=\frac12\)
=>\(S_{ABC}=2\cdot S_{ABI}\)
Ta có: \(\frac{S_{ABC}}{S_{AMN}}=\frac{BC^2}{AH^2}\)
=>\(\frac{2\cdot S_{ABI}}{S_{AMN}}=\frac{BC^2}{AH^2}\)
=>\(\frac{S_{ABI}}{S_{AMN}}=\frac{BC^2}{2AH^2}=\frac12\cdot\left(\frac{BC}{AH}\right)^2\) (1)
Từ (1),(2) suy ra \(\frac{S_{ABI}}{S_{AMN}}=\frac{1}{2\cdot\sin^2B}+\frac{1}{2cos^2HAC}\)
Cho tam giác ABC vuông tại A đường cao AH, biết AB = 3cm; AC = 4 cm tính: a) BC,AH,HB b) số đo góc B

a) Áp dụng định lí Py - ta - go vào tam giác vuông ABC ta có:
BC = \(\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}\)
BC = 5 cm
Từ hệ thức của cạnh góc vuông và hình chiếu của nó trên cạnh huyền suy ra:
HB = \(\dfrac{AB^2}{BC}=\dfrac{3^2}{5}=1,8\) cm
Ta có: HB + HC = BC
1,8 + HC = 5
HC = 3,2 cm
Theo hệ thức liên quan đến đường cao ta có:
AH2 = HB . HC
AH2 = 1,8 . 3,2
AH2 = 5,76
⇒ AH = 2,4 cm
b) Xét tam giác AHB vuông tại H, HM là đường cao có:
∠(AMN) + ∠(ANM ) = 90 0 ⇒ ∠(ANM ) = 90 0 - ∠(AMN) = 53 , 1 0