K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Xét tam giác AHB vuông tại H, HM là đường cao có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

∠(AMN) + ∠(ANM ) =  90 0  ⇒ ∠(ANM ) = 90 0 - ∠(AMN) = 53 , 1 0

14 tháng 10 2021

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

hay AH=2,4(cm)

Xét tứ giác AMHN có 

\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật

Suy ra: AH=MN=2,4(cm)

19 tháng 10 2021

c: Xét ΔAHB vuông tại H có HM là đường cao 

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao 

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

12 tháng 11 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

11 tháng 12 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tam giác ABC vuông tại A, đường cao AH có:

B C 2 = A B 2 + A C 2 = 25 ⇒ BC = 5(cm)

AB2 = BH.BC ⇒ BH = AB2/BC = 9/5 = 1,8(cm)

BH + CH = BC⇒ CH = BC - BH = 5 - 1,8 = 3,2 (cm)

A H 2 = BH.CH ⇒ AH = B H . C H = 1 , 8 . 3 , 2 = 2,4 (cm)

Xét tứ giác AMHN có:

∠(MAN) = ∠(ANH) = ∠(AMH) = 90 0

⇒ Tứ giác AMHN là hình chữ nhật

⇒ MN = AH = 2,4 (cm)

17 giờ trước (13:52)

Sửa đề: Chứng minh \(\frac{S_{ABI}}{S_{AMN}}=\frac{1}{2\cdot\sin^2B}+\frac{1}{2cos^2HAC}\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC;AB^2=BH\cdot BC;AC^2=CH\cdot CB\)

Ta có: \(\frac{1}{2\cdot\sin^2B}+\frac{1}{2cos^2HAC}\)

\(=\frac{1}{2\cdot\sin^2B}+\frac{1}{2\cdot cos^2B}=\frac12\left(\frac{1}{\sin^2B}+\frac{1}{cos^2B}\right)\)

\(=\frac12\cdot\frac{\sin^2B+cos^2B}{\left(\sin B\cdot cosB\right)^2}=\frac12\cdot\frac{1}{\left(\sin B\cdot cosB\right)^2}\)

\(=\frac12\cdot\frac{1}{\left(\frac{AC}{BC}\cdot\frac{AB}{BC}\right)^2}=\frac12\cdot\frac{1}{\left(\frac{AB\cdot AC}{BC^2}\right)^2}=\frac12\cdot\left(\frac{1}{\frac{AH\cdot BC}{BC^2}}\right)^2\)

\(=\frac12\cdot\left(\frac{BC}{AH}\right)^2\) (2)

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\)

=>\(AM=\frac{AH^2}{AB}\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AH^2=AN\cdot AC\)

=>\(AN=\frac{AH^2}{AC}\)

ΔABC có AH là đường cao

nên \(S_{ABC}=\frac12\cdot AH\cdot BC\)

ΔAMN vuông tại A

=>\(S_{AMN}=\frac12\cdot AM\cdot AN=\frac12\cdot\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac12\cdot\frac{AH^4}{AH\cdot BC}=\frac12\cdot\frac{AH^3}{BC}\)

=>\(\frac{S_{AMN}}{S_{ABC}}=\frac{AH^3}{2\cdot BC}:\frac{AH\cdot BC}{2}=\frac{AH^3}{2\cdot BC}\cdot\frac{2}{AH\cdot BC}=\frac{AH^2}{BC^2}\)

=>\(\frac{S_{ABC}}{S_{AMN}}=\frac{BC^2}{AH^2}\)

I là trung điểm của BC

=>\(\frac{BI}{BC}=\frac12\)

=>\(S_{ABC}=2\cdot S_{ABI}\)

Ta có: \(\frac{S_{ABC}}{S_{AMN}}=\frac{BC^2}{AH^2}\)

=>\(\frac{2\cdot S_{ABI}}{S_{AMN}}=\frac{BC^2}{AH^2}\)

=>\(\frac{S_{ABI}}{S_{AMN}}=\frac{BC^2}{2AH^2}=\frac12\cdot\left(\frac{BC}{AH}\right)^2\) (1)

Từ (1),(2) suy ra \(\frac{S_{ABI}}{S_{AMN}}=\frac{1}{2\cdot\sin^2B}+\frac{1}{2cos^2HAC}\)

27 tháng 11 2021

a) Áp dụng định lí Py - ta - go vào tam giác vuông ABC ta có:

BC = \(\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}\)

BC = 5 cm

Từ hệ thức của cạnh góc vuông và hình chiếu của nó trên cạnh huyền suy ra:     

HB = \(\dfrac{AB^2}{BC}=\dfrac{3^2}{5}=1,8\) cm

Ta có:     HB + HC = BC

              1,8 +  HC = 5

                        HC = 3,2 cm

Theo hệ thức liên quan đến đường cao ta có:

AH2 = HB . HC

AH2 = 1,8 . 3,2

AH2 = 5,76 

⇒ AH = 2,4 cm

a: BC=10cm

BH=3,6cm