Bộ GD&ĐT cấm dạy thêm: Giải pháp nào dành cho nhà trường và giáo viên?
🔥 Xem ngay Bộ đề kiểm tra giữa kỳ II năm học 2024 - 2025
Chinh phục Đấu trường thử thách OLM hoàn toàn mới, xem ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC vuông tại A có đường cao AH. lấy M bất kỳ trên cạnh BC trên nửa mặt phẳng bờ BC có chứa A kẻ tia Bx, Cy vuông góc với BC đường thẳng vuông góc với AM tại A cắt By, Cy lần lượt tại I và K. Chứng minh:
a) \(AB^2\)=BH.BC
b) tam giác ACK đồng dạng tam giác ABM
c) tam giác ABC đồng dạng tam giác AMK
Vẽ hình nữa nhé!!!
Cho tam giác ABC vuông tại A, có trung tuyến AM, đường cao AH. Trên cùng nửa mặt phẳng bờ BC kẻ hai tia Ax và Cy cùng vuông góc với BC. Qua A kẻ đường thẳng vuông góc với AM cắt Bx và Cy lần lượt tại P và Q. Chứng minh:a) AP = BP và AQ = CQ.b) PC đi qua trung điểm I của AH.c) Khi BC cố định, BC = 2a, điểm A chuyển động sao cho gócBAC = 90°. Tìm vị trí điểm H trên đoạn thẳng BC để diện tích tam giác ABH đạt giá trị lớn nhất, tìm giá trị lớn nhất đó.
Giải câu c thôi cx được ạ
cho tam giác ABC vuông tại A. O là trung điểm của BC. Trên cùng một nửa mặt phẳng bờ BC chứa điểm A vẽ hai tia Bx vuông góc BC, Cy vuông góc BC. Qua O vẽ đường thẳng song song với AC cắt Bx tại M. MA cắt Cy tại Na) Cm : góc MON = 90 độb) MO cắt AB tại P , NO cắt AC tại Q. Tứ giác APOQ là hình gì ? Vì sao ?
Cho tam giác ABC vuông tại A và kẻ đường cao AH a)C/m tam giác ABC đồng dạng tam giác HBA, từ đó=>AB.AB=BH.BC b)C/m tam giác HAB đồng dạng tam giác HCA, từ đó =>AH.AH=BH.CH c)Trên tia đối AC lấy điểm D sao cho AD>AC, vẽ đường thẳng h song song với AC, cắt AB, DB lần lượt tại M,N. C/m MN/MH=AD/AC d)Vẽ AE vuông góc BD tại E. C/m góc BEH= góc BAH
Cho tam giác ABC vuông tại A. T rên nửa mặt phẳng bờ BC không chưa điểm A, dựng hai tia Bx, Cy vuông góc với cạnh BC . Trên tia Bx lấy D sao cho BD = BA, trên tia Cy lấy điểm E sao cho CE = CA. Gọi G là giao điểm của BE và CD, K và L lần lượt là giao điểm của AD , AE với cạnh BC.
a) Chứng minh rằng CA = CK : BA = BL.
b) Đường thẳng G song song với BC cắt AD, AE théo thứ tự tại I, J. Gọi H là hình chiếu vuông góc của G lên BC. Chứng minh IHJ là tam giác vuông cân
Cho tam giác vuông ABC có cạnh AC>AB đường cao AH(H thuộc BC). Trên tia HC lấy điểm D sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E
a, CM: hai tam giác BEC và ADC đồng dạng
b, CM: Tam giác ABE cân
c,Gọi M là trung điểm của BE và vẽ tia AM cắt BG tại G. CMR:\(\frac{GB}{BC}=\frac{HD}{AH+HC}\)
Câu hỏi của Phạm An Nguyên - Toán lớp 8 - Học toán với OnlineMath
Cho tam giác ABC vuông tại C (CA > CB), một điểm I trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C người ta kẻ các tia Ax, By vuông góc với AB. Đường thẳng vuông góc với IC kẻ qua C cắt Ax, By lần lượt tại các điểm M, N.
a) Chứng minh: tam giác CAI đồng dạng với tam giác CBN.
b) So sánh hai tam giỏc ABC và INC.
c) Chứng minh: gúc MIN = 900.
d) Tìm vị trí điểm I sao cho diện tích ∆IMN lớn gấp đôi diện tích ∆ABC.
Cho tam giác không vuông ABC (AB < AC), đường cao AH. Gọi E, F theo thứ tự là hình chiếu vuông góc của H trên AB và AC. Đường thằng È cắt đường thẳng BC tại D. Trên nửa mp bờ CD chứa A. Vẽ nửa đường tròn đường kính CD. Qua B vẽ đường thẳng vuông góc với CD cắt nửa đường tròn trên tại K.
a. CMR: BEFC là tứ giác nội tiếp.
b. CMR: tam giác DEK đồng dạng với tam giác DKF.
Cho tam giác $ABC$ có ba góc nhọn ($AB < AC$), dựng $AH$ vuông góc với $BC$ tại $H$. Gọi $M$, $N$ theo thứ tự là hình chiếu vuông góc của điểm $H$ trên $AB$ và $AC$. Đường thẳng $MN$ cắt đường thẳng $BC$ tại điểm $D$. Trên nửa mặt phẳng bờ $CD$ chứa điểm $A$ vẽ nửa đường tròn đường kính $CD$. Qua $B$ kẻ đường thẳng vuông góc với $CD$ cắt nửa đường tròn trên tại điểm $E$.
a) Chứng minh tứ giác $AMHN$ là tứ giác nội tiếp.
b) Chứng minh \(\widehat{EBM}=\widehat{DNH}\).
c) Chứng minh $DM.DN = DB.DC$.