Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. △ABC cân tại A, lại có AH là đường cao
=> AH cũng là đường trung tuyến, đường phân giác
=> HB = HC và \(\widehat{BAH}=\widehat{CAH}\)
b. ta có: \(HB=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot6=3\left(cm\right)\)
áp dụng định lý pythagore vào △BAH vuông tại H ta có:
\(AH=\sqrt{AB^2-BH^2}=\sqrt{4^2-3^2}=\sqrt{7}\left(cm\right)\)
c. xét △ vuông HMB và △ vuông HNC có
HB = HC (gt); \(\widehat{ABC}=\widehat{ACB}\) (△ABC cân tại A)
=> △HMB = △HNC (ch-gn)
=> HM = HN (2 cạnnh tương ứng)
=> △MHN là △ cân (tại H)

a: Ta có: ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=10^2-6^2=64\)
=>\(AH=\sqrt{64}=8\left(cm\right)\)
b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của góc BAC
c: Ta có: ΔAHB=ΔAHC
=>BH=CH
Xét ΔBMH vuông tại M và ΔCNH vuông tại N có
BH=CH
\(\widehat{B}=\widehat{C}\)
Do đó: ΔBMH=ΔCNH
d: Xét ΔABO vuông tại B và ΔACO vuông tại C có
AO chung
AB=AC
Do đó: ΔABO=ΔACO
=>OB=OC
=>ΔOBC cân tại O

a. xét △ABH và △ACH , có:
\(AB=AC\left(gt\right);\widehat{ABC}=\widehat{ACB}\left(gt\right);HB=HC\left(gt\right)\)
=> △ABH = △ACH (c-g-c)
=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)
b. ta có: \(BH=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot12=6\left(cm\right)\)
áp dụng định lý pythagore vào △ABH vuông tại B ta có:
\(AH=\sqrt{AB^2-BH^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)
c. xét △ vuông AMH và △ vuông ANH có:
AH cạnh chung; \(\widehat{MAH}=\widehat{NAH}\left(\text{câu a}\right)\)
=> △ AMH = △ANH (ch-gn)
=> HM = HN (2 cạnh tương ứng)
d. △ AMH = △ANH (câu c) => AM = AN
=> △AMN là △ cân tại A
xét △AMN có: \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\left(1\right)\)
xét △ABC có: \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\left(2\right)\)
TỪ (1) (2) \(=>\widehat{AMN}=\widehat{ABC}\)
mà 2 góc này ở vị trí đồng vị
=> MN // BC

a) Có AB=AC=10cm
=> \(\Delta\)ABC cân tại A
b) Có: \(\hept{\begin{cases}\widehat{AHB}=\widehat{AHC}=90^o\\\widehat{ABH}=\widehat{ACH}\end{cases}}\)
=> \(\widehat{BAH}=\widehat{CAH}\)=> AH là phân giác \(\widehat{BAC}\)
Ta có: AB=AC (gt)
AH chung
\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)
=> \(\Delta BAH=\Delta CAH\)
c) Có: \(\hept{\begin{cases}\widehat{MBH}=\widehat{NCH}\\\widehat{BMH}=\widehat{HNC}=90^o\\BH=CH\left(\Delta AHB=\Delta ACH\right)\end{cases}\Rightarrow\Delta BHM=\Delta CHN}\)
d) \(BH=\frac{1}{2}BC=\frac{12}{2}=6\left(cm\right)\)
\(AH=\sqrt{AB^2-BH^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)
e) Ta có: \(\hept{\begin{cases}\widehat{OBC}=90^o-\widehat{ABC}\\\widehat{OCB}=90^o-\widehat{ACB}\end{cases}}\)
mà \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{OBC}=\widehat{OCB}\)
\(\Rightarrow\Delta\)OBC cân tại O

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A

Bạn ơi, mình sắp xếp các cạnh và các góc đúng, không sai đâu nên đừng viết ngược lại nhá
a, Ta có : BH = HC = BC : 2
=> BH = HC = 8 : 2
=> BH = HC = 4 ( cm )
=> BH = HC
b, - Xét tam giác AHB vuông tại H có :
AC2 = AH2 + HC2
=> 52 = AH2 + 42
=> 25 = AH2 + 16
=> AH2 = 25 + 16
=> AH2 = 41
=> AH = 20,5 ( cm )
a, Theo định lí Pytago tam giác AHC vuông tại H
\(AC=\sqrt{AH^2+HC^2}=\sqrt{64+36}=10\)cm
Xét tam giác ABC có AB = AC nên tam giác ABC cân tại A
mà AH là đường cao đồng thời là đường trung tuyến
=> HC = HB = 6 cm
b, Vì tam giác ABC cân tại A => ^ABC = ^ACB
c, Vì tam giác ABC cân tại A, AH đồng thời là đường phân giác
=> ^BAH = ^HAC
Xét tam giác AMH và tam giác ANH có :
^AMH = ^ANH = 900
AH _ chung
^BAH = ^NAH ( cmt )
Vậy tam giác AMH = tam giác ANH ( ch - gn )
=> MH = NH ( 2 cạnh tương ứng )
Xét tam giác HMN có MH = NH ( cmt )
=> tam giác HMN cân tại H
chắc đúng ko đấy bn đây là bài kiểm tra nên tui phải làm đúng