Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMAB và ΔMDC có
MA=MD
\(\hat{AMB}=\hat{DMC}\) (hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\hat{MAB}=\hat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
ΔMAB=ΔMDC
=>AB=DC
b: Ta có: MH⊥AB
AB//DC
Do đó: MH⊥DC
c: Xét ΔMAI và ΔMDK có
MA=MD
\(\hat{MAI}=\hat{MDK}\) (hai góc so le trong, AI//DK)
AI=DK
Do đó: ΔMAI=ΔMDK
=>\(\hat{AMI}=\hat{DMK}\)
mà \(\hat{AMI}+\hat{IMD}=180^0\) (hai góc kề bù)
nên \(\hat{IMD}+\hat{DMK}=180^0\)
=>I,M,K thẳng hàng
d: Xét ΔBAC và ΔCDB có
BA=CD
\(\hat{ABC}=\hat{DCB}\) (hai góc so le trong, AB//CD)
BC chung
Do đó: ΔBAC=ΔCDB
=>\(\hat{BAC}=\hat{CDB}\)
Để \(\hat{CDB}=90^0\) thì \(\hat{BAC}=90^0\)

a) xét tam giác ABM = DCM( c-g-c ) (*)
=) * góc BAD = góc ADC
=) AB // CD
* AB = DC ( 1 )
xét tam giác ABH= EBH ( c-g-c )
=) AB = BE ( 2 )
từ (1) và (2)=) CD=BE
b) ( đề sai, phải là CD vuông góc AC mới đúng )
từ (*) =) góc ABM = DCM
mà tg ABC vuông tại A=) ABM+ACB=90 độ
suy ra góc DCM+ACB=90 độ
=) CD vuông góc vs AC
c ) áp dụng trung tuyến cạnh huyền =) AM=1/2BC
d) Do AM = 1/2BC
=) BC = 10cm
áp dụng định lý py-ta-go cho tg ABC vuông tại A ta có:
AB^2 + AC^2 = BC^2
AB^2 = 36
AB = 6cm

A B C H E D M S N K I
Câu a và câu b tham khảo tại link: Câu hỏi của Aftery - Toán lớp 7 - Học toán với OnlineMath
c) Xét \(\Delta\)ABE có AH vuông góc với AE và; HA = HE
=> AH là đường cao đồng thời là đường trung tuyến của \(\Delta\)ABE
=> \(\Delta\)ABE cân tại B
=> AB = BE
d) Ta có: SN vuông AH ; BC vuông AH
=> SN //BC
=> NK //MC
=> ^KNI = ^MCI
mặt khác có: NK = MC ; IN = IC ( gt)
=> \(\Delta\)NIK = \(\Delta\)CIM
=> ^NIK = ^CIM mà ^NIK + ^KIC = 180o
=> ^CIM + ^KIC = 180o
=> ^KIM = 180o
=>M; I ; K thẳng hàng