Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hai tg ABM và tg ABC có chung đường cao từ B->AC nên
\(\frac{S_{ABM}}{S_{ABC}}=\frac{AM}{AC}=\frac{1}{4}\Rightarrow S_{ABM}=\frac{S_{ABC}}{4}\)
\(\Rightarrow S_{BCM}=S_{ABC}-S_{ABM}=\frac{3xS_{ABC}}{4}\)
Hai tg CEM và tg BCM có chung đường cao từ C->BM nên
\(\frac{S_{CEM}}{S_{BCM}}=\frac{EM}{BM}=\frac{1}{4}\Rightarrow S_{CEM}=\frac{S_{BCM}}{4}=\frac{1}{4}x\frac{3xS_{ABC}}{4}=\frac{3xS_{ABC}}{16}\)

Vì BE=1313× BC mà ABE và ABC chung chiều cao hạ từ A
nên SABESABE=1313 ×=217,5 : 3 = 72,5(cm2)
⇒SADESADE+SBDESBDE=SABESABE \
⇒SADESADE= SABESABE-SBEDSBED
⇒SADESADE =72,5 – 14,55 = 57,95(cm2)
⇒ ADE và ABE chung chiều cao hạ từ E nên SADESABESADESABE=ADABADAB
⇒AB =SADESABESADESABE×AD=72,557,9572,557,95×8=10 (cm)
Cho tam giác ABC có diện tích 240 cm2. Trên BC lấy điểm D sao cho BD=3DC. Tínhdiện tích tam giác ABD. (ĐS cm2) là bài 3. Cho tam giác ABC có diện tích là 400 cm2. Điểm M trên AC sao cho 2xAM=3xCM.Tính diện tích tam giác ABM. (ĐS: cm2) là bài 4. Cho tam giác ABC có diện tích 720 cm2. Trên BC lấy M sao cho BM=1/2 CM. NốiAM , trên AM lấy N sao cho AN=3NM. Tính diện tích tam giác ABN. (ĐS: cm2) là bài 5 nhá các bạn. mình quên cách ra

Giả sử \(\vec{AB} = \mathbf{a}\), \(\vec{AD} = \mathbf{b}\), và \(\vec{AM} = \frac{1}{2}\vec{AC}\).
Vì \(ABCD\) là hình thoi, nên \(\vec{AB} = \vec{DC} = -\vec{CB}\).
Do đó, \(\vec{CB} = -\mathbf{a}\) và \(\vec{AM} = \frac{1}{2}(\vec{AC}) = \frac{1}{2}(\vec{AD} + \vec{DC}) = \frac{1}{2}(\mathbf{b} - \mathbf{a})\).
Bây giờ, tính tích vô hướng \(\vec{MA} \times \vec{CB}\):
\[\vec{MA} \times \vec{CB} = \frac{1}{2}(\mathbf{b} - \mathbf{a}) \times (-\mathbf{a})\]
Sử dụng tích vô hướng của vecto, ta có:
\[\vec{MA} \times \vec{CB} = \frac{1}{2}(\mathbf{b} \times (-\mathbf{a})) - \frac{1}{2}(\mathbf{a} \times (-\mathbf{a})\]
Với \(\mathbf{b} \times (-\mathbf{a}) = -(\mathbf{a} \times \mathbf{b})\), và \(\mathbf{a} \times (-\mathbf{a}) = -\|\mathbf{a}\|^2\), ta có:
\[\vec{MA} \times \vec{CB} = \frac{1}{2}(\mathbf{a} \times \mathbf{b}) + \frac{1}{2}\|\mathbf{a}\|^2\]
Nếu bạn có thông tin cụ thể về \(\mathbf{a}\) và \(\mathbf{b}\), bạn có thể tính toán giá trị này.
Vì BM = 2MC nên BM bằng 2/3 BC
mà tam giác ABC và tam giác ABM có chung chiều cao hạ từ A xuống BC
Do đó diện tích ABM= 2/3 diện tích ABC
Vậy: Diện tích tam giác ABM là:
270 x 2/3 = 180 (cm²)
Đáp số: 180 cm²
ủa, 2/3 chỗ nào, đâu?